Georaphically Weighted Ridge Regression Modelling on 2023 Poverty Indicators Data in the Provinces of West Kalimantan and Central Kalimantan

Main Article Content

Syarli Dita Anjani
Widiarti
Bernadhita Herindri Samodera Utami
Mustofa Usman
Vitri Aprilla Handayani

Abstract

Regression analysis is a method to explain the relations between independent variables and a dependent variable. Linear regression analysis relies on certain assumptions, one of the assumption is homogeneity. However, there is a situation when the variance at each observation differs or called spatial heterogeneity.This issue can be solved using Geographically Weighted Regression (GWR), a statistical method that can be fixed spatial heterogeneity by adding a local weighted matrix, the result in GWR model is a local model for each observation point. However, GWR has a limitation, it cannot handle multicollinearity. Ridge regression is a method used to solved multicollinearity by adding a bias constant (λ). A GWR model that contains multicollinearity and fixed using ridge regression is known as Geographically Weighted Ridge Regression (GWRR).

Article Details

Section
Articles

References

[1] A. Fotheringham, C. Brunsdon, and M. Charlton. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Wiley and Sons, Ltd., England, 2002.

[2] E. M. Mujiati, Yundari, and N. M. Huda. Pemodelan geographically weighted regression pada angka partisipasi ©2024 The Authors.

[3] M. R. Ikhsanudin and E. Pasaribu. Modeling the percentage of poor population in Java Island using geographically weighted regression approach. Jurnal Matematika, Statistika, dan Komputasi, 20(1):224–229, 2023.

[4] A. N. Septiyana, I. Fatkhurrohman, F. F. Fikri, R. S, A. T. Prananggalih, A. B. Bahtiar, D. S. ML, and S. M. Berliana. Pemodelan geographically weighted regression pada tingkat pengangguran terbuka di Pulau Jawa tahun 2020. In Seminar Nasional Official Statistics, pages 345–737, 2023.

[5] R. Erdkhadifa. Pemodelan spasial tingkat pengangguran terbuka di Jawa Timur dengan geographically weighted regression. Jurnal Statistika, 21(2):85–97, 2021.

[6] P. F. Utami, A. Rusgiyono, and D. Ispriyanti. Pemodelan semiparametric geographically weighted regression pada kasus pneumonia balita Provinsi Jawa Tengah. Jurnal Gaussian, 10(2):250–258, 2021.

[7] Y. Farida, M. R. Nurfadila, P. K. Intan, H. Khaulasari, N. Ulinnuha, W. D. Utami, and D. Yuliati. Modeling the flood disaster in South Kalimantan using geographically weighted regression and mixed geographically weighted regression. ITM Web of Conferences, 58:1–11, 2024.

[8] W. Nuryati and Suliadi. Pengujian pada regresi ridge dan penerapannya terhadap data produk domestik regional bruto Provinsi Jawa Barat. Jurnal Statistics, 3(2):486–492, 2023.

[9] F. Fatmawati and R. Y. Suratman. Performa regresi ridge dan regresi lasso pada data dengan multikolinearitas. Leibniz: Jurnal Matematika, 2(2):1–10, 2022.

[10] A. H. Arrasyid, D. Ispriyanti, and A. Hoyyi. Metode modified jackknife ridge regression dalam penanganan multikolinieritas. Jurnal Gaussian, 10(1):104–113, 2021.

[11] N. Delvia, Mustafid, and H. Yasin. Geographically weighted negative binomial regression untuk menangani overdispersi pada jumlah penduduk miskin. Jurnal Gaussian, 10(4):532–543, 2021.

[12] F. Cholid. Perbandingan geographically weighted regression dengan mixed geographically weighted regression. Jurnal Statistika, 23(2):96–109, 2023.

[13] A. Sharma. Exploratory spatial analysis of food insecurity and diabetes: An application of multiscale geographically weighted regression. Annals of GIS, 29(4):485–498, 2023.

[14] L. Laome, I. N. Budiantara, and V. Ratnasari. Estimation curve of mixed spline truncated and Fourier series estimator for geographically weighted nonparametric regression. Mathematics, 11:1–13, 2023.

[15] A. Fadliana, H. Pramoedyo, and R. Fitriani. Implementation of locally compensated ridge geographically weighted regression model in spatial data with multicollinearity problems. Media Statistika, 13(2):125–135, 2020.

[16] F. Andrian and A. S. Yundari. Pemodelan geographically weighted ridge regression pada tingkat pengangguran terbuka di Kalimantan Barat. J. Diferensial, 5(2):83–95, 2023.

[17] A. Y. Qur’ani, M. A. D. Octavanny, and R. S. Widiastuti. Estimasi parameter model geographically weighted ridge regression pada indikator pengukuran penanganan stunting di Indonesia. Oktal: Jurnal Ilmu Komputer dan Science, 2(8):2245–2253, 2023.

[18] N. R. Draper and H. Smith. Applied Regression Analysis: Third Edition. John Wiley & Sons, New York, 1998.

[19] Y. Leung, C.-L. Mei, and W. Zhang. Statistical test for spatial nonstationarity based on the geographically weighted regression model. Environment and Planning A, 32:9–32, 2000.

[20] D. C. Wheeler. Diagnostic tools and a remedial method for collinearity in geographically weighted regression. Environment and Planning A, 39:2464–2481, 2007.