The Expert System for Diagnosing Pest and Disease in Pineapple Plant Using the Iterative Deepening Search (IDS) Method on the Android Platform
Main Article Content
Abstract
This research was conducted to design and develop pineapple pests and diseases diagnosis expert system with Iterative Deepening Search (IDS). This expert system runs on android platform. The certainty factor of this expert system is initialized by an expert and the final certainty factor is computed by the system. The data used in this expert system consist of 5 types of pineapple pests, 6 types of pineapple diseases. 31 types of symptoms and 11 types of rules are used to diagnose pineapple pests and diseases. To validate this expert system, two types of tests were conducted, which are expert system verification and system evaluation by users. Expert system verification was conducted by comparing 10 results from the diagnosis system and the results of the diagnosis by an expert. The compare result shows that the expert system result 100% is similar to the result of the expert. To evaluate the system, 30 respondents were asked to evaluate using questionnaires, which were grouped into three groups, i.e. group I (pineapple experts), group II (pineapple farmers and agriculture students) and group III (computer science students). All three stated this expert system runs well (75.56%, 72.44%, and 79.83% respectively).
Article Details
References
[1] Badan Pusat Statistik. Ekspor menurut komoditi, tahun 2018, 2018.
[2] Pusdatin. Outlook Nenas. Sekretariat Jenderal Kementerian Pertanian, Jakarta, 2016.
[3] E. Purwanto, V. Atina, and E. S. Desylawati. Sistem pakar deteksi dini gangguan mata dan syaraf akibat penggunaan smartphone. Jurnal Informatika UPGRIS, 3(2):152–162, 2017.
[4] R. Kumar. Farmers’ use of the mobile phone for accessing agricultural information in haryana: An analytical study.
Open Information Science, 7(1):20220145, 2023.
[5] V. P. Dewa, A. Pujianto, and M. H. Putra. Sistem Pakar Diagnosa Penyakit Buah Nanas Menggunakan Algoritma
Bayes Berbasis Web. STMIK AMIKOM, Yogyakarta, 2017.
[6] M. S. Nassr and S. S. Abu-Naser. Knowledge based system for diagnosing pineapple diseases. International Journal of Academic Pedagogical Research (IJAPR), 2(7):9–15, 2018.
[7] G. A. Rianty and Taufiq. Sistem pakar diagnosa penyakit tanaman kakao dengan metode breadth first search. Progresif: Jurnal Ilmiah Komputer, 12(1):1243–1386, 2016.
[8] F. J. Pane, E. Rianti, and H. Marfalino. Application of an expert system with the breadth first search (bfs) method
in diagnosing areca plant diseases. Journal of Computer Science and Information Technology, 10(2):55–59, 2024.
[9] C. F. Tan, L. S. Wahidin, S. N. Khalil, N. Tamaldin, J. Hu, and G. W. M. Rauterberg. The application of expert system:
A review of research and applications. ARPN Journal of Engineering and Applied Sciences, 11(4):2448–2453, 2016.
[10] J. Hendrik. Penerapan algoritma interative-deepening search (ids) dalam penyelesaian permainan teka-teki
kakuro. Majalah Ilmiah INTI (Informasi dan Teknologi Ilmiah), 12(3):282–286, 2017.
[11] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman. Building machines that learn and think like people.
Behavioral and Brain Sciences, 40:e253, January 2017.
[12] R. Abbott. Understanding artificial intelligence. In The Rea-sonable Robot: Artificial Intelligence and the Law. Cambridge University Press, 2020.
[13] A. S. Broto. Perancangan dan Implementasi Sistem Pakar Untuk Analisa Penyakit Dalam. Universitas Diponegoro,
Semarang, 2010.
[14] Kusrini. Sistem Pakar: Teori dan Aplikasi. Penerbit Andi, Yogyakarta, 2016.
[15] P. I. Ignizio. An Introduction to Expert Systems: The Development and Implementation of Rule-Based Expert Systems. McGraw-Hill, 1991.
[16] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson, Hoboken, 4 edition, 2021.
[17] R. E. Korf. Depth-first iterative deepening: An optimal admissible tree search. Artificial Intelligence, 27:97–109, 1985.
[18] T. Sutojo, E. Mulyanto, and V. Suhartono. Kecerdasan Buatan. Andi, Yogyakarta, 2011.
[19] S. Hartati and S. Iswanti. Sistem Pakar dan Pengembangannya. Graha Ilmu, Yogyakarta, 2013.
[20] E. Turban. Decision Support System and Intelligence System. Andi, Yogyakarta, 2005.
[21] S. Hadiati and N. L. P. Indriyani. Petunjuk Teknis Budidaya Nenas. Balai Penelitian Tanaman Buah Tropika, Solok, 2008.
[22] K. K. Dey, J. C. Green, M. Melzer, W. Borth, and J. S. Hu. Mealybug wilt of pineapple and associated viruses. Horticulturae, 4(4):1–21, 2018.
[23] N. F. N. Ibrahim, M. H. Mohd, N. M. I. M. Nor, and L. Zakaria. Fusarium fujikuroi causing fusariosis of pineapple
in peninsular malaysia. Australasian Plant Disease Notes, 11:21, 2016.
[24] K. G. Rohrbach and D. P. Schmitt. Fusariosis. In R. C. Ploetz, G. A. Zentmyer, W. T. Nishijima, K. G. Rohrbach, and H. D. Ohr, editors, Compendium of Tropical Fruit Diseases, page 49. 1998.
[25] R. C. Ploetz. Fusarium-induced disease of tropical, perennial crops. Phytopathology, 96:648–652, 2006.
[26] J. E. Pena, J. L. Sharp, and M. Wysoki. Tropical fruit pests and pollinators: Biology, economic importance, natural
enemies and control. Journal of Insect Conservation, 11:421, 2002.