Products Distribution from Suppliers to Retailers in Bandarlampung City (Case Study: Retailers location in Teluk Betung)
Main Article Content
Abstract
Traveling Salesman Problem(TSP) is a problem where a salesman visits cities, each city is connected, and there are weights to move between cities, thus forming a complete weighted graph. The objective of the TSP is to determine all city routes with the lowest total weight. Cheapest Insertion Heuristic (CIH), one of the algorithms to solve TSP. This algorithm provides different travel routes depending on the order of city elimination on the subtour in question. In this study, the CIH algorithm will be discussed to determine the shortest route for distribution of goods from suppliers to several retailers in the city of Bandarlampung, especially for 23 retailers whose locations in Teluk Betung sub-district. The result shows that the total distance travel from the supplier to the 23 retailers and then back to the supplier location is 34.84 km.
Article Details
References
[1] B. R. T. Putri. Marketing Management. Faculty of Animal Husbandry, Udayana University, Denpasar, 2017.
[2] A. Wijaya. Introduction to Operations Research. Media Discourse Partners, Jakarta, 1st edition, 2013.
[3] G. Reinelt. The Traveling Salesman: Computational Solutions for TSP Applications. Springer-Verlag, 1994.
[4] M. Asim, R. Gopalia, and S. Swar. Traveling salesman problem using genetic algorithm. International Journal of Latest Trends in Engineering and Technology (IJLTET), 3(3):183–190, 2014.
[5] D. B. Fogel. An evolutionary approach to the traveling salesman problem. Biological Cybernetics, 60:139, 1988.
[6] Rinaldi Munir. Discrete Mathematics. Informatics, Bandung, 3rd edition, 2009.
[7] Wamiliana. Minimum Spanning Gree dan Desain Jaringan. Pusaka Media, Bandarlampung, 2022.
[8] M. Kurniawan, F. Farida, and S. Agustini. Rute terpendek algoritma particle swarm optimization dan brute force untuk optimasi travelling salesman problem. Jurnal Teknik Informatika, 14(2):191–200, 2021.
[9] S. Violina. Analysis of brute force and branch & bound algorithms to solve the traveling salesperson problem (tsp).
Turkish Journal of Computer and Mathematics Education, 12(8):1226–1229, 2021.
[10] S. Hougardy and N. Wilde. On the nearest neighbor rule for the metric traveling salesman problem. Discrete Applied Mathematics, 195:101–103, 2015.
[11] A. F. B. Winda, S. R. Sumardi, N. N. Sari, and J. E. Simarmata. Product distribution route using nearest neighbor
algorithm. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(3):894–900, 2024.
[12] I. Sutoyo. Penerapan algoritma nearest neighbour untuk menyelesaikan travelling salesman problem. Paradigma, 20(1):101–106, 2018.
[13] A. Lusiani, S. S. Purwaningsih, and E. Sartika. Tsp method using nearest neighbor algorithm at pt. j&t express in bandung. Lebesgue: Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika, 4(3):1560–1568, 2023.
[14] A. B. Doumi, B. A. Mahafzah, and H. Hiary. Solving traveling salesman problem using genetic algorithm based on
efficient mutation operator. Journal of Theoretical and Applied Information Technology, 99(15):3768–3781, 2021.
[15] L. V. Hignasari and E. D. Mahira. Optimization of goods distribution route assisted by google map with cheapest insertion heuristic algorithm (cih). Jurnal Sinergi, 22(2):132– 138, 2018.
[16] K. Meliantri, P. Githa, and N. K. A. Wirdiani. Optimasi distribusi produk menggunakan metode cheapest insertion
heuristic berbasis web. Jurnal Jurusan Teknologi Informasi, 6(3):204–213, 2018.
[17] G. R. Utomo, S. D. Maylawati, and N. C. Alam. Implementasi algoritma cheapest insertion heuristic (cih) dalam penyelesaian travelling salesman problem (tsp). Jurnal Online Informatika, 3(1):61–67, 2018.
[18] Kusrini and J. E. Istiyanto. Penyelesaian travelling salesman problem dengan algoritma cheapest insertion heuristics dan basis data. Jurnal Informatika University Petra Kristian, 8(2):109–114, 2007.
[19] O. Cheikhrouhou and I. Khoufi. A comprehensive survey on the multiple traveling salesman problem: Applications, approaches and taxonomy. Computer Science Review, 40:100369, 2021.
[20] C. Dahiya and S. Sangwan. Literature review on travelling salesman problem. International Journal of Research,
5(16):1152–1155, 2018.