On Square-Closed Lie Ideals and Generalized Homoderivations in Prime Rings
Main Article Content
Abstract
Let M be a square-closed noncentral Lie ideal of a prime ring R with char(R) ≠ 2. An additive mapping G on R is defined as a generalized homoderivation if it satisfies G(στ) = G(σ) h(τ) + G′(σ) y + x h(τ) for all σ and τ in R. This paper focuses on studying generalized homoderivations of prime rings using square-closed Lie ideals that satisfy certain differential identities.
Article Details
References
[1] E. C. Posner. Derivations in Prime Rings. Proceedings of the American Mathematical Society, 8(6):1093–1100, 1957.
[2] G. Naga Malleswari, S. Sreenivasulu, and G. Shobhalatha. Semiprime Rings with Multiplicative (Generalized) Derivations Involving Left Multipliers. Creat. Math. Inform., 30(1):61–68, 2021.
[3] G. Naga Malleswari, S. Sreenivasulu, and G. Shobhalatha. Some Identities Involving Multiplicative (Generalized) (α,1)-Derivations in Semiprime Rings. J. Indones. Math. Soc., 28(1):44–51, 2022.
[4] G. Naga Malleswari, S. Sreenivasulu, and G. Shobhalatha. Centralizing Properties of (α,1)-Derivations in Semiprime Rings. Int. J. Math. And Appl., 8(1):127–132, 2020.
[5] M. A. Idrissi and L. Oukhtite. Some Commutativity Theorems for Rings With Involution Involving Generalized Derivations. Asian-Eur. J. Math., 12(1):1950001, 2019.
[6] L. Oukhtite, A. Mamouni, and M. Ashraf. Commutativity Theorems for Rings with Differential Identities on Jordan Ideals. Comment. Math. Univ. Carolin., 54(4):447–457, 2013.
[7] G. Naga Malleswari and S. Sreenivasulu. On Skew Jordan Product and Generalized Derivations in Prime Rings with Involution. JP Journal of Algebra, Number Theory and Applications, 63(4):329–334, 2024.
[8] M. K. A. Nawas and R. M. Al-Omary. On Ideals and Commutativity of Prime Rings with Generalized Derivations. European Journal of Pure and Applied Mathematics, 11(1):79–89, 2018.
[9] B. Nejjar, A. Kacha, A. Mamouni, and L. Oukhtite. Commutativity Theorems in Rings with Involution. Comm. Algebra, 45(2):698–708, 2017.
[10] M. M. El-Soufi and A. Ghareeb. Centrally Extended α-Homoderivations on Prime and Semiprime Rings. Journal of Mathematics, 2022:2584177, 2022.
[11] M. N. Daif and H. E. Bell. Remarks on Derivations on Semiprime Rings. Internat. J. Math. Math. Sci., 15(1):205–206, 1992.
[12] N. Rehman, M. R. Mozumder, and N. Abbasi. Homoderivations on Ideals of Prime and Semiprime Rings. The Aligarh Bulletin of Mathematics, 38(1–2):77–87, 2019.
[13] E. F. Alharfie and N. M. Muthana. The Commutativity of Prime Rings with Homoderivations. International Journal of Advanced and Applied Sciences, 5(5):79–81, 2018.
[14] A. Boua and E. K. Sögütcü. Semiprime Rings with Generalized Homoderivations. Bol. Soc. Paran. Mat. (3s.), 41:1–8, 2023.
[15] O. Golbasi. Homoderivations on Lie Ideals of Prime Rings. Int. J. Math. Stat., 13(4):58, 2025 (to appear).
[16] M. Mehdi Ebrahimi and H. Pajoohesh. Inner Derivations and Homoderivations on l-Rings. Acta Mathematica Hungarica, 100(1–2):157–165, 2003.
[17] E. Gselmann and G. Kiss. Remarks on the Notion of Homoderivations. Annales Universitatis Scientiarum Budapestinensis de Rolando Eotvos Nominatae, Sectio Geologica, 51:111–130, 2020.
[18] S. Belkadi, S. Ali, and L. Taoufiq. On n-Jordan Homoderivations in Rings. Georgian Mathematical Journal, 31(1):17–24, 2024.
[19] N. Rehman, E. K. Sogutcu, and H. M. Alnoghashi. On Generalized Homoderivations of Prime Rings. Matematychni Studii, 60(1):12–27, 2023.
[20] M. M. El-Soufy. Rings with Some Kind of Mappings, 2000.