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In the linear model Y = X + ¢ with X having a full column rank, all f parameters can
be estimated and the estimates are unique. However, in cases where X does not have a
full column rank, not all § parameters can be estimated. In this paper, the problem to be

discussed is how to determine parameters or parameter functions that are estimable and
testable. Applications to the case of unbalanced data will be presented.
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1. INTRODUCTION

The idea of a parametric estimable function was first proposed
by Bose [1], who stated that such a function requires that the
function have an unbiased linear estimator. Since then, this con-
cept has attracted much attention from researchers in statistical
theory and linear modeling, and has become an interesting topic
of study, especially when discussing cases of missing and un-
balanced data, nonstandard models, and models for unbalanced
data with non-full rank column design matrix X [2]. The impor-
tance of the idea of estimability lies in the fact that there is a
best unbiased linear estimator (BLUE) of a linear combination of
parameters if the linear combination is estimable [2, 3, 4, 5, 6].
Generally, estimability requirements are very difficult to check
[2, 7, 8, 9]. For studies and developments in the concept of es-
timability, we can see many writings [2, 3, 10, 11, 12]. Searle [11]
defined estimability in terms of the generalized inverse design
matrix, while Milliken [3] defined estimability using the trace
matrix. Baksalary and Kala [13] developed the concept which
have been developed by Milliken by generalizing the properties
of Milliken’s design matrix. Alalouf and Styan [7] presented
several characteristics of estimability by examining properties of
their design matrices Usman [9] presented estimability criteria
for missing data cases, particularly in split plot designs, while

Elswick et al. [14] presented a technique for determining es-
timable parametric functions by using the concept of elementary
row operations in their matrix design. Equation (1) is the linear
model with the mean vector X overparameterized [10, 12] or
with the design of the matrix X not having a full column rank,
then two vectors  can produce the same vector Xf.

Y=XB+e 1)

In many non-standard models, for example in the case of
unbalanced data in hypothesis testing, the concept of estimabil-
ity becomes a very important issue. Equation (2) below is the
hypothesis testing: :

H, : Hf = a with the alternative H, : Hf #a (2)

A requirement for a hypothesis to be testable is that Hf
must be an estimable function [2, 3, 11, 15, 16], meaning that
each component of Hf is an estimable function of parameters. If
Hp is an estimable function of parameters, then the hypothesis
is said to be a testable hypothesis [3, 15]. By testable hypothesis,
we mean that a hypothesis is testable if it can be expressed in
the form of an estimable function [16]. Equation (2) does not
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imply that a hypothesis consisting of non-estimable functions
cannot be tested. However, it is reasonable to assume that a
testable hypothesis is constructed by an estimable function for
the following reason: If Hf = a is to be tested, then the case for
full rank suggests that HB® — a will be part of the test statistic
that must be invariant to 8° and this will be invariant if Hf is
estimable.

Some application of estimability in state space model given
by [17], and in factor analysis given by [18], application in global
navigation satellite systems (GNSS) given by [19], and applica-
tion in pharmaceutical models is given by [20].

2. THE METHOD

In linear model Y = X + ¢, here X is an nx p matrix, fisa px1
parameter vector and Y is an n x 1 observation vector. Let Af,
where A is s x p matrix and if there is a matrix B that satisfies
Equation (3) as follows:

E(B'Y) = AB ®3)

then Ap is said to be estimable. In other words, every func-
tion of observation is estimable [5, 16, 21, 22].

From model (1), E(Y) = Xf, then from Equation (3), A = BX
or equivalently:

A
|| = o @

with p(.) denoting the rank of a matrix. Equation (4) is
satisfied if and only if with generalized inverse [10, 11].
Theorem 1. [6]

If @’f is estimable, then a’f is f = (X’X)"X’Y which is
invariant with respect to the choice of (X’ X)~.

Proof.

If @’ is estimable, then a’ = b’ X for some b. Hence

dp=dX'X)X'Y
dp=b'XX'X)X'Y

is invariant of a’f} is a consequence of the fact that it is invariant
to the choice of generalized-inverse (g-inverse).

Milliken [3] discussed the concept of estimability of rank
matrix involving the concept of generalized inverse matrix, in
the sense of Moore-Penrose g-inverse [10]; that is, denotes the
g-inverse of matrix A if it satisfies AA™ symmetric, A~ A symmet-
ric, AATA = A, and A"AA™ = A™. The estimability discussed
the concerns of linear combinations of parameters in the lin-
ear model in Equation (1), and Equation (5) below is its normal
equation:

X'Xp=X'Y )

The Equation (6), f, for Equation (5).

© 2025 The Authors.
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B=XY+(U-XX)h ©6)

h is the p x 1 vector. If Af is an estimable linear combination,
then it is known that the BLUE of the set with any solution of
Equation (6). Then the estimability condition can be expressed
in the form of the rank of the product matrix.

Theorem 2. [3]

For linear model (1) with rank matrix X of q, the linear
combination Af is estimable, where A is a k x p matrix of rank
k, if and only if the rank of the matrix is g — k.

Proof.

For unbalanced designs, it is generally very difficult to de-
termine whether the linear combination of f is estimable. The
result of Theorem 1 is also difficult to verify, but the estimability
condition can be formulated using the following matrix trace.
Theorem 3. [3]

For the conditions in Theorem 1, a linear combination Ap is
estimable if and only if

tr[X(I - A" A)YX(I - A A} | = q—k ()

Proof.
Matrix in Equation (7) is idempotent, hence

tr [X(I - AA¥X(I - A A} | = p[XUT - A"A)

{X(I-A A}
=p[XT-A4)]
=q—k

Alaoof and Styan [7] explored the estimability characteristics
based on X. Here we present two theorems that propose charac-
teristics based on these two matrices.
Theorem 4. [7]

Estimability characteristics based on X. The vector Ap is
estimable if E(Y) = X if and only if one of the following seven
conditions is met.

(1.1) A=BX for some matrix B.

(1.2) p[X"A’] = p(X).

(1.3) p[XI - A A)] = p(X) — p(A) for some g-inverse
A.

(1.4) AX X = Afor some g-inverse X.

(1.5) AX; isinvariant for every least squares X .

(1.6) p(AX)) is invariant for every least squares X; .

(1.7)  p(AX;) = p(A) is invariant for every solution of

least squares.

Theorem 5 [7]
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Estimability characteristics based on X. The vector A is
estimable if E(Y) = Xf if and only if one of the following nine
conditions is met.

Aﬁ is invariant for every ﬁ
that satisfied X'Xﬁ = XY,

pl X A'] = p(X'X),

pIX(I - A" A)] = p(X) — p(A)

for some g-inverse A,

(1.1)

(1.2)
(1.3)

(14) AX’X) (X’X) = A for some g-inverse X'X,
(1.5)

(1.6)

A(X’X)™ A’ is invariant for every g-inverse X’X,

X'X,
PACXX)A) = p(A)

is invariant for every g-inverse X’X,

1.7)

(18) p([xf ‘2]) = p(X'X) + p(AX'X) A')

for some g-inverse X’'X.

o |
-([%5]) v

For some g-inverse (X’X)~ and S~ where S = —A(X’X)~A’.

For special cases where the design has several missing ob-
servations and the model has restrictions or conditions on its
parameters, see [9] who presents estimability criteria for split
plot designs with several missing observations and restrictions
on its parameters.
Connected Design and Estimability.

Let the design:

(X'X) + (X' X)) ASAX'X)™ —(X'X)A'S
—STAX'X)" S

DesignI. Column Trt

>
M X

X

Connected

© 2025 The Authors.

p(A(X’X)” A’) is invariant for every g-inverse X’X,

Integra: Journal of Integrated Mathematics and Computer Science, 2 (2025) 98-102

DesignII. Column Trt
X X X
X X
X X X
X X
X X X

Not connected

Note: “X” represents the observation of a combination of treat-
ments [2].

Another concept related to the estimability function is the con-
nectedness of the two-way treatment structure. If it is assumed
that the row and column levels of the treatments do not interact,
then the combined treatment can be modeled

[lij:‘ll+fi+ﬁj i=1,2,...,b;j:1,2,...,r.

A two-way treatment structure is said to be connected if and
only if the data occurring in the cells of the two-way treatment
structure is such that

:5] - :Bj* and Ti = Tixs

estimable for every i # i* and j # j*.
For design I is connected, while design II is not connected.
As an illustration, from design I,

Pr—Po = (ut+11+P1)—(p+ 11+ fs)+(u+ 12+ fs) —(u+ 12+ f).

It is a linear combination of cell means. So ff; — f, is estimable.
Meanwhile, from design II, we cannot obtain ff; — f,, so at I,
B1 — B2 is not estimable.

Testable Hypothesis

In testing the hypothesis Hy : Hf = a with the alternative
H, : HB # a, Hf must be an estimable function of the pa-
rameters. Seely [15] illustrates the problem that arises if we do
not restrict the hypothesis testing problem to parametric func-
tions. This can result in the distribution classes for Hy, P, and
the distribution classes for H,, P, being non-exclusive. In the
hypothesis Hy : Hf = a with the alternative H, : Hf # a, if
Hp is an estimable function, the hypothesis is called a testable
hypothesis. Searle et al [16] showed that if Hf is not estimable,
the numerator of the sum of squares in the F-ratio will not be
well-defined.

The definition of a testable hypothesis is that a testable hy-
pothesis does not provide much information. By testable hypoth-
esis, we mean a hypothesis that can be expressed in the form
of an estimable function. It seems reasonable to assume that a
testable hypothesis is one constructed by an estimable function
for the following reason: If Hf —a is to be tested, then the results
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from the case of a linear model with full column rank suggest
that Hf, — a is part of the test statistic, which must of course
be invariant with respect to ffy, and this will be invariant only if
Hp is estimable.

To construct a hypothesis test, we will present Milliken’s [3]
approach. For linear model (1), we consider the null hypotheses
which given in Equation (8) as follow:

Hy, : HB =0 with the alternative H, : HZ #0  (8)

With H being a k x p matrix with rank k and the linear
combination Hf is estimable. So

plX(I-H'H)]=q—k.

With the Principle of Conditional Error [2] we can use it to
calculate the sum of the squares of the hypothesis error as follows.
Equation (9) is the model for the null hypothesis in Equation (8).

Y=XI-H'H)pf+e (9)
The sum of the squared errors of model (9) is
SSpr = Y'[I — X(I - HYH)(X(I - H'H))*]Y.
The sum of squares of the linear model errors is
SSE = Y'[I - XX*]Y.

With the Principle of Conditional Error, the sum of squares due
to the null hypothesis can be formulated as follows,

SSHy = SSgr—SSE = Y’[XXJr —X(I—H—H)(X(I—H+H))+] Y.
And with the Principle Conditional Error, the statistical test is

_ SSHy/k
~ SSE/(n—k)’

With F distributed F with degrees of freedom k and n — k.

3. RESULTS AND DISCUSSION

Application of a testable hypothesis on unbalanced data.
As an illustration, suppose we have the following data:

X X
X X

X X

X X X

With X indicating existing observations, the Equation (10)
is the model:

Y,-j:,u+ai+ﬂj+sij (10)

© 2025 The Authors.
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Where Y;; is the observation in the first row and the second
column j; &; the i*" row effect; ; is the jt" effect of column, and
&j is random error. The data above, in the form of a linear model,
can be written as follows:

i

ay

as
B
B

Bs
4]

=~

Il
'D—KD—KHHHD—KD—KHH‘
O O OO OO ==
S O R R R RO OO
== O OO0 O O o O
S O O OO = OO =
O R OO R OO0 OO
S OO =R OO O = O
RO R oo O~ Ooo

Or it can be written as Equation (11) as follows

Y=XB+e¢ (11)

The matrix X is not fully column-ranked, with parameter

B being ' = (u, ay, a2, as, B1, P2, B3, B1). Using elementary row
operations, the echelon matrix of X is,

1 0 0 1 0 0 0 1]f -
010 10200 ofl"”
001 -1000 oll*
000 0 100 —1||*
X#={0 00 0 0 1 0 —1||®|+¢
000 0 00 1 —1 b
000 0 00 0 O P
000 0 010 0 Ps
0 00 0 0 0 0 o,ﬁ‘*-
So the parameter function is estimable:
ptroastfi—o—ay, oy—oas, ax—as, Pi1—Ps,  Pa—Pi,  Pz—Pa.

Based on this estimable parameter function, we can construct
several testable hypotheses, including:

Hy: By=pr=ps=ps

This hypothesis in the form of the above parameter function
is equivalent to the hypothesis

Hy:pi—Ps=0, Po—Ps=0,andf5— =0
or
0o 0 0 01 0 0 -1 0
orHy:[0 0 0 0 0 1 O —1ﬁ= 0f,
o 0 0 0 0 0 1 -1 0
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or Hy : HB = 0, where Hp is an estimable parameter func-
tion. So this hypothesis is a testable hypothesis. To test this
hypothesis, we can use the procedure above or the Principle of
Conditional Error. We can also test the hypothesis

Hy: aer=ax =03
This hypothesis in the form of an estimable parameter func-

tion can be expressed in the following hypothesis form:

Hy: a— a3 =0and ay — a3 = 0,

or
1 0 -1 0 0 0 0 O 0
H°'01—100000]ﬁ_[0]

or Hy : H;f = 0, where H;f is an estimable parameter

function, so it is a testable hypothesis.

4. CONCLUSIONS

The concept of estimability developed primarily in the periods of
1960s to 1970s, with numerous research findings on its character-
istics and testability. The concept of estimability is particularly
useful in addressing cases of missing data that lead to unbal-
anced data. The study and application of estimability to messy
data is also very useful in identifying estimable parameters and
testability of parameters. The concept of estimability continues
to evolve, and its application in research across various fields
continues to expand.
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