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Abstract
The Generalized Space-Time Autoregressive Moving Average (GSTARMA) model is a de-
velopment of the time series model that can capture both spatial and temporal dynamics
simultaneously. This study uses the GSTARMAmodel to analyze inflation data in five cities in
South Sulawesi Province from January 2017 to October 2024. The GSTARMA model obtained
is GSTARMA (1,0,1) with a cross-correlation normalization spatial weight matrix. The results
of the analysis indicate a spatial influence between locations and temporal relationships in
the inflation data.
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1. INTRODUCTION

A time series is a collection of observations organized sequen-
tially according to time sequence [1]. Wei [2] defines two cate-
gories of time series: univariate and multivariate. In forecasting
time series data, analysis is not only influenced by time factors
but also by location factors. A space-time model is one that can
combine both of these aspects.

The first space-time model introduced was Space-Time Au-
toregressive (STAR). The STAR model was then expanded into
the STARMA model by adding a Moving Average component to
account for random errors from previous times. The STARMA
model defines that each location has the same characteristics,
so it is not suitable if applied to locations that have different
characteristics. The GSTARMA model can be used to analyze
locations that have different characteristics (heterogeneous).

GSTARMA applications in economics are usually used to
predict spatial (space) and temporal (time) phenomena that are
interrelated such as inflation rates from several related regions
based on historical data. Inflation in one city/district can influ-
ence inflation in other cities/districts, especially those that are
geographically close or have close economic relations.

South Sulawesi Province inflation is calculated based on the

combined consumer price index obtained from five cities, includ-
ing Bulukumba City, Watampone City, Makassar City, Pare-pare
City, and Palopo City. The diversity of South Sulawesi Province
creates different inflation dynamics, making it suitable for anal-
ysis using the GSTARMA method which considers spatial rela-
tionships between regions.

Some previous research related to the integration of GSTAR-
IMA models in various forecasting applications include the re-
search by Munandar et al [3] which developed a hybrid model
combining GSTARIMAwith Deep Neural Networks (DNN) to en-
hance rainfall prediction accuracy. Salsabila et al [4] focused on
developing the GSTARIMA (1,1,1) model order for climate data
forecasting. They utilized the data analytics lifecycle method to
analyse large-scale rainfall data, concluding that the GSTARIMA
(3,1,1) model provided more accurate short-term forecasts, par-
ticularly for rainfall in West Java Province. Safira et al. [5]
compared the performance of ARIMA and GSTARIMA mod-
els in predicting the spatial impact on inflation in Java Island
Monika et al [6] conducted a systematic literature review on
integrating the GSTARIMA model with heteroskedastic error
and the Kriging method for climate forecasting. Aulia and Sa-
putro [7] analysed the Generalized Space-Time Autoregressive
Integrated Moving Average with Exogenous (GSTARIMA-X)
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models. They examined the model’s capability to incorporate ex-
ogenous variables, enhancing the forecasting of space-time data
by considering additional influencing factors. Akbar et al. [8]
applied the GSTARMA model to forecast air pollutant levels in
Surabaya. Ajobo et al [9] introduced the Generalized Space-Time
Seasonal Autoregressive Integrated Moving Average Seemingly
Unrelated Regression (GSTSARIMA-SUR) model to analyze sea-
sonal and non-stationary data. Monika et al. [10] developed
the GSTARI-X-ARCH model by integrating GSTARIMA with
exogenous variables and ARCH models, using a data mining
approach for forecasting climate in West Java, and Kurniawan
et al [11] focused on modeling data following the GSTARMA-X
model using Kalman filters. This approach aimed to enhance the
estimation and forecasting of space-time data by leveraging the
recursive capabilities of Kalman filtering techniques. These stud-
ies collectively contribute to the advancement of spatio-temporal
modeling techniques, particularly in climate and environmen-
tal forecasting, by integrating GSTARIMA models with various
statistical and machine learning methods.

Mukhaiyar et al. [12] applied a Generalized Space–Time Au-
toregressive Model incorporating a three-dimensional spatial
weight matrix to predict water levels in Indonesian peatlands.
Pasaribu et al. [13] used a similar autoregressive framework to
analyse the vertical distribution of copper and gold grades, focus-
ing on a porphyry-deposit case study. Mukhaiyar et al. [14] also
introduced a Minimum Spanning Tree approach to construct
the weight matrix within a Generalized Space–Time Autore-
gressive Model for modeling COVID-19 cases across Java Island.
In another study, Mukhaiyar et al. [15] evaluated Space–Time
Autoregressive Modeling with time-correlated errors to ana-
lyze vehicle counts passing through the Purbaleunyi toll gates.
Huda & Imro’ah [16] investigated which spatial weight matrix
is most effective for a Generalized Space–Time Model applied to
COVID-19 case data on Java Island. Hestuningtias & Kurniawan
[17] implemented the Generalized Space–Time Autoregressive
Model to forecast inflation. Finally, Huda et al. [18] examined an
approximation of the Generalized Space–Time Autoregressive
model for discrete phenomena using the INAR (Integer-valued
Autoregressive) framework.

Based on the background that has been presented, the author
is interested in conducting an analysis using the GSTARIMA
model with a differencing component (𝑑 = 0) for data that is al-
ready stationary or also called the GSTARMA model on inflation
data in five cities in South Sulawesi Province to determine the
predicted inflation value in five different cities that are influenced
by the economic relationship between each city.

2. METHODS

The data used in this study are secondary, specifically inflation
data from five cities in South Sulawesi province. Makassar City,
Bulukumba City, Watampone City, Pare-pare City, and Palopo
City are the five places used as research variables. The data
period used is January 2017 to October 2024 with a total of 94
data. The selection of data from the previous 5 to 10 years will
provide sufficient historical data to capture trends and dynamics

of change between locations so that it is more representative of
the period to be predicted. The use of data from only one year
may not reflect the variability needed for the analysis. Inflation
data from January 2017 to April 2023 is used as in-sample data
and inflation data from May to October 2024 is used as out-
sample data. This data selection is carried out based on the
provisions of optimal data division with a ratio of 80:20, with 80%
of the data used to build and estimate the model (in-sample), and
the remaining 20% is used to test the ability of the forecast results
(out-sample). Inflation data in the five cities were obtained from
the Central Statistics Agency of South Sulawesi Province which
can be accessed via https://sulsel.bps.go.id/id.

The steps used in analyzing inflation data using the GSTAR-
MA method are as follows:

1. Conducting data exploration to determine data characteris-
tics by identifying patterns and gaining an understanding
of the data set.

2. Calculating the Gini index value to measure the level of
heterogeneity of the research location. If the Gini index
value is equal to 0, it means that there is no heterogeneity
between regions, whereas if the Gini index value is equal
to 1, then there is high heterogeneity between regions.

3. Conducting spatial autocorrelation testing. Spatial auto-
correlation is the dependence of a particular variable value
on the value of the same variable recorded at neighbor-
ing locations. The Moran index can be used as a tool to
measure the level of spatial autocorrelation. That index
is a global index to determine whether there is a spatial
relationship in a particular event.

4. Conducting data stationarity checks. The research data is
viewed for its stationarity against the variance and mean.
If the data is not stationary against the variance, a Box-Cox
transformation is used, and if the data is not stationary
against the mean, differencing is applied.

5. Identification of GSTARMA model. Time order in the
GSTARMA model is identified using AICC value with the
criteria that the model order that has the smallest AICC
value is considered the best model order. The GSTARMA
model has a spatial order of one since greater orders are
difficult to grasp.

6. Performing the formation and calculation of spatial weight-
ing matrices using uniform location weights and cross-
correlation normalized location weights.

7. Conducting GSTARMAmodel parameter estimation using
the Ordinary Least Square (OLS) and Seemingly Unrelated
Regression (SUR) approaches. The OLS method is used
when the residuals between each equation are not corre-
lated with each other, while the SUR method is used when
the residuals between equations are related to each other
or correlated with each other.

8. Model diagnostic test with a portmanteau test to deter-
mine whether the residuals are white noise and normally
distributed multivariate by looking at the q-q plot.

9. Performing the selection of the best GSTARMA model
with the smallest RMSE value.
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10. Forecasting inflation data for several future periods in five
cities using the best GSTARMA model.

3. RESULTS AND DISCUSSION

In this study, inflation data processing was carried out using SAS
and Minitab software to obtain the best GSTARMA model and
forecast inflation values for several periods into the future. The
analysis was used to obtain a model that not only describes spa-
tial and temporal relationships in inflation data but also provides
predictions of inflation values for each location.

3.1 Descriptive Statistics
Descriptive statistics are used to describe and illustrate the in-
formation contained in the data. Table 1 shows the results of
descriptive statistics on inflation values in five cities in South
Sulawesi Province.

Table 1. Descriptive Inflation Data in Five Cities in South Su-
lawesi Province

Location Average
Standard
Devia-
tion

Maximum
Value

Minimum
Value

Bulukumba 0.2666 0.3907 1.31 -0.60
Watampone 0.2961 0.5067 1.83 -0.69
Makassar 0.2846 0.4421 1.27 -0.85
Pare-pare 0.2779 0.6227 1.88 -1.59
Palopo 0.2738 0.4528 1.74 -0.69

Table 1 shows that the highest average inflation value of
0.2961 is in Watampone City, while the lowest average inflation
value is in Bulukumba City with a value of 0.2666. The largest
standard deviation is in Pare-pare City, which is 0.6227. This
shows that inflation data in Pare-pare City is more spread out
than the other four cities, while the lowest standard deviation
is in Bulukumba City with a value of 0.3907, which shows that
inflation data in Bulukumba City has a smaller level of data
spread. The highest inflation value is in Pare-pare City with a
value of 1.88, and the lowest inflation value is also in Pare-pare
City with a value of -1.59.

3.2 Inflation Data Plot
Data plots are used as exploratory tools to understand the char-
acteristics and patterns contained in the data. Figure 1 displays
the combined data plot of inflation values from five cities.

Based on Figure 1, it can be seen that the five cities in South
Sulawesi Province have relatively the same pattern in terms of
exploration. This shows that there is a mutual influence effect
between the five cities. The data plot also shows that inflation in
the five cities in South Sulawesi Province has changed over time.
Based on the data plot, it is known that inflation data fluctuates,
but does not have a tendency to increase or decrease.

Figure 1. Plot of Inflation Value Data in Five Cities in South
Sulawesi Province

3.3 Gini Index Inflation Data
Heterogeneity between locations can be measured using the
Gini index, a higher Gini index value indicates a greater level of
heterogeneity. The following is the calculation of the Gini index
for inflation data in five cities:

𝐼𝐺 = 1 +
1

𝑇
−

2

𝑇 2𝑧̄𝑡

𝑁

∑

𝑖=1

𝑇

∑

𝑡=1

𝑧𝑡

= 1 +
1

76
−

2

762 ⋅ 0.2798
⋅ 106.32

= 0.8816

Based on the calculation results above, the Gini index value
obtained is 0.8816, this indicates heterogeneity between locations
in inflation data.

Table 2. 𝑝 − 𝑉𝑎𝑙𝑢𝑒 Antar Lokasi

Location Bulu-
kumba

Watam-
pone

Makas-
sar

Pare-
pare Palopo

Bulu-
kumba 1.0000 0.8235

< .0001
0.7571
< .0001

0.6506
< .0001

0.7086
< .0001

Watam-
pone

0.8235
< .0001 1.0000 0.6729

< .0001
0.6867
< .0001

0.7721
< .0001

Makassar 0.7571
< .0001

0.6729
< .0001 1.0000 0.6693

< .0001
0.7034
< .0001

Pare-
pare

0.6506
< .0001

0.6867
< .0001

0.6693
< .0001 1.0000 0.6704

< .0001

Palopo 0.7086
< .0001

0.7721
< .0001

0.7034
< .0001

0.6704
< .0001 1.0000

3.4 Correlation between Variable Locations
The correlation value is used to determine the direction of the
relationship, the strength of the relationship, and the significance
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of the strength of the relationship between each location variable
used. The significance test of the correlation value can be done
with the following hypothesis:
𝐻0 ∶ 𝑟𝑖𝑗 = 0 (There is no correlation between location variables)
𝐻1 ∶ 𝑟𝑖𝑗 ≠ 0 (There is a correlation between location variables)

Table 2 displays the correlation values between location vari-
ables in data inflation. Based on the results of the correlation
test in Table 2, it is known that each location variable has a
𝑝 − 𝑣𝑎𝑙𝑢𝑒 <𝛼 (0.05) which means that 𝐻0 is rejected. So it can
be concluded that there is a correlation between each city. The
resulting correlation value shows a value greater than 0.5 so it
can be said that there is a fairly strong correlation between each
location variable.

Table 3. Results of Moran’s Index Test of Inflation Data

I E (I) VAR
(I) Z(I) 𝑝 − 𝑣𝑎𝑙𝑢𝑒

Infor-
mation

0.2744 -
0.2500 0.0404 2.609 0.0045 Signifi-

cant

3.5 Spatial Autocorrelation Testing
Spatial autocorrelation testing aims to identify spatial depen-
dence on inflation values in five cities. Spatial autocorrelation
testing can be done using the Moran index. According to Lee &
Wong [19], the formula for the Moran index value can be written
as follows.

𝐼 =
𝑁 ∑

𝑁
𝑖=1 ∑

𝑁
𝑗=1 𝑊𝑖𝑗 (𝑍𝑖 − 𝑍̄)(𝑍𝑗 − 𝑍̄)

𝑆0 ∑
𝑁
𝑖=1(𝑍𝑖 − 𝑍̄)2

(1)

𝐼 : Moran index
𝑁 : Number of locations
𝑍𝑖 : Observation value at location 𝑖

𝑍𝑗 : Observation value at location 𝑗

𝑍̄ : Average number of observation values
𝑊𝑖𝑗 : Location weighting element between areas 𝑖 and 𝑗

Spatial autocorrelation can be tested with the following hy-
pothesis:
𝐻0 ∶ 𝐼 = 0 (no spatial autocorrelation)
𝐻0 ∶ 𝐼 ≠ 0 (there is spatial autocorrelation)

Table 3 shows the Results of Moran’s Index Test of Inflation
Data. Based on Table 3, it is known that the p-value is less than
𝛼, and the value of |𝑍(𝐼 )| > 𝑍 𝛼

2
= 1.96, which means that the

null hypothesis (𝐻0) is rejected. Therefore, there is a statistically
significant spatial autocorrelation in inflation data in five cities
in South Sulawesi Province. This shows that inflation in five
cities is not only influenced by inflation in the location itself but
is also influenced by four other locations.

3.6 Testing the Stationarity of Inflation Data against Vari-
ation

Data is considered stationary concerning variance when its vari-
ance does not change over time. Data is stationary concerning

variance if the 𝜆 value from the Box-Cox transformation has a
rounded value equal to 1. If the rounded value is not equal to 1,
then a transformation is required. The data used to create the
Box-Cox plot must have positive values, while some inflation
data contain negative values. Therefore, a transformation is
needed so that all data becomes positive. The inflation data of
five cities in South Sulawesi Province was transformed into:

𝑍
∗
𝑡 = 𝑍𝑡 + 2 (2)

Table 4 displys Box-Cox transformation form of five cities
in South Sulawesi Province. Based on the results of the Box-
Cox transformation presented in Table 4, Watampone City, Bu-
lukumba City, Makassar City, and Palopo City require one Box-
Cox transformation so that the data is stationary concerning
the variance, while for Pare-pare City, no transformation was
carried out because the data was already stationary concerning
the variance before the transformation was carried out.

Table 4. Box-Cox Transformation Form of Five Cities in South
Sulawesi Province

Location 𝜆
Transformation 1 (𝑍∗∗

𝑡 )
Transformation

Form 𝜆

Bulukumba 0 𝑙𝑛𝑍∗
𝑡 1

Watampone 0 𝑙𝑛𝑍∗
𝑡 1

Makassar 0.5
√
𝑍∗
𝑡 1

Pare-pare 1 - 0
Palopo -0.5 1√

𝑍∗
𝑡

1

3.7 Testing the Stationarity of Inflation Data to the Mean
After the data is stated to be stationary against the variance, the
next step is to test the stationarity of the data against the mean.
In addition to using the ACF plot, stationarity to the mean can
be seen through the Augmented Dickey-Fuller (ADF) test, this
test can be done with the following hypothesis.
𝐻0 ∶ 𝜙∗ ≥ 0 (data is not stationary to the mean)
𝐻1 ∶ 𝜙∗ < 0 (data is stationary to the mean)

Table 5. Augmented Dickey-Fuller Inflation Data Test Results

Location 𝑝 − 𝑣𝑎𝑙𝑢𝑒 𝜏𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑘

Bulukumba 0.01 -4.48
Watampone 0.03 -3.68
Makassar 0.03 -3.74
Pare-pare 0.03 -3.71
Palopo 0.01 -4.24

Table 5 gives details of Augmented Dickey-Fuller inflation
data test results. Table 5 shows that the inflation data of five cities
in South Sulawesi Province which were previously stationary to
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the variance, also meet the stationarity to the mean. This can be
seen based on the p-value which is smaller than the significance
level of 0.05, so it can be concluded that the inflation data of five
cities in South Sulawesi Province do not require a differentiation
process.

3.8 Identification of GSTARMAModel on Inflation Data
According to Ozcicek & McMilin [20], akaike’s Information Cri-
teria Corrected (AICC) can provide a model with a more optimal
lag length compared to other indicators. Determining the order
in the GSTARMA model can be done by selecting the model that
has the smallest AICC value. Table 6 shows this result.

Table 6. Akaike’s Information Criteria Values Corrected Infla-
tion Data

Lag MA (0) MA (1) MA (2) MA (3) MA (4)

AR (0) -
14.4897

-
13.9055

-
13.3938

-
12.7673

-
11.9692

AR (1) -
19.7543

-
20.4192

-
19.2340

-
18.5567

-
17.5363

AR (2) -
20.3404

-
19.5653

-
18.9468

-
18.0577

-
16.7707

AR (3) -
20.0028

-
19.0918

-
18.3268

-
17.6178

-
16.0415

AR (4) -
19.4192

-
18.3805

-
17.3528

-
16.0907

-
14.1761

AR (5) -
18.7398

-
17.6427

-
16.2950

-
13.8489

-
10.9725

AR (6) -
17.4882

-
14.9882

-
12.7259 -8.7842 -3.5136

Table 6 shows the AICC values of several autoregressive and
moving average orders. Based on the table, the smallest AICC
value is obtained at the AR(1) and MA(1) orders, therefore the
model that fits the data characteristics is GSTARMA (1,0,1) which
has an AR vector of order one and an MA vector of order one
and the spatial order for the AR and MA conditions is one. The
GSTARMA model formed can be written as follows.

𝑍
∗∗
(𝑡) = Φ10𝑊

(0)
𝑍
∗∗
(𝑡−1) + Φ11𝑊

(1)
𝑍
∗∗
(𝑡−1) + 𝑒𝑡

− Θ10𝑊
(0)
𝑒(𝑡−1) − Θ11𝑊

(1)
𝑒(𝑡−1) (3)

with:
𝑍∗∗
(𝑡)

: the transformed observation data vector at time 𝑡
Φ10 : diagonal matrix of autoregressive vector parameters at time
lag 1 and spatial lag 0
Φ11 : diagonal matrix of autoregressive vector parameters at time
lag 1 and spatial lag 1
Θ10 : diagonal matrix of moving average vector parameters at
time lag 1 and spatial lag 0
Θ11 : diagonal matrix of moving average vector parameters at
time lag 1 and spatial lag 1

𝑊 (0) : spatial weighting matrix at spatial lag 0
𝑊 (1) : spatial weighting matrix at spatial lag 1
𝑒(𝑡) : vector of error values at time 𝑡
𝑒(𝑡−1) : vector of error values at time 𝑡 − 1

3.9 Calculation of Spatial Location Weights in Inflation
Data

Spatial location weights are used to describe the extent to which
a city influences other cities in inflation dynamics. In this study,
the location weights used are uniform location weights and
normalized cross-correlation.

3.9.1 Uniform Location Weighting of Inflation Data
Uniform location weight assumes that the locations analyzed
have the same influence by giving the same weight value to all
locations. The calculation of uniform location weight can use
the following formula.

𝑊𝑖𝑗 =
1

𝑛
(4)

𝑊𝑖𝑗 =

{
1

𝑛
, if 𝑖 ≠ 𝑗

0, if 𝑖 = 𝑗
(5)

with:
𝑛 : number of adjacent locations (N-1)
𝑊𝑖𝑗 : uniform location weight from location i to location j

Based on the calculations that have been carried out, the
following uniform location weight matrix is obtained:

𝑊 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0.25 0.25 0.25 0.25

0.25 0 0.25 0.25 0.25

0.25 0.25 0 0.25 0.25

0.25 0.25 0.25 0 0.25

0.25 0.25 0.25 0.25 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

In this matrix, each city gets the same influence, which is 0.25,
from the other four cities, because all weights between cities
have the same value, this matrix is called a uniform location
weight matrix.

3.9.2 Location Weights Normalized Cross Correlation of
Inflation Data

These location weights use the results of the cross-correlation
between each location with the appropriate lag. This process will
produce appropriate location weights that satisfy the equation
∑𝑖≠𝑗 |𝑊𝑖𝑗 | = 1.

𝑊𝑖𝑗 =
𝑟𝑖𝑗 (𝑘)

∑𝑘≠𝑖 |𝑟𝑖𝑘(𝑘)|
, 𝑖 ≠ 𝑗 (6)

Based on the calculations that have been carried out, the
location weight matrix is obtained as follows.
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𝑊 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0.27949 0.264754 0.254867 −0.20089

0.122326 0 0.268712 0.384843 −0.22412

0.142368 0.468307 0 −0.13035 −0.25898

0.133388 0.198944 0.324976 0 −0.34269

−0.14087 −0.29221 −0.28109 −0.28583 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Table 7. OLS Estimation with Uniform Location Weights on
Inflation Data

Parame-
ter

Estimated
Value

𝑝 −

𝑣𝑎𝑙𝑢𝑒

Parame-
ter

Estimated
Value

𝑝 −

𝑣𝑎𝑙𝑢𝑒

Φ0
1

-
0.57483 0.0331 Θ0

1

-
0.43178 0.0200

Φ1
1 0.956638 <

0.0001
Θ1

1

-
0.02402 0.9157

Φ0
2 0.356065 0.0161 Θ0

2

-
0.03413 0.9455

Φ1
2

-
0.63251 0.0003 Φ1

1 2.483113 0.0423

Φ0
3

-
0.77320 0.0003 Θ0

3

-
0.03891 0.9329

Φ1
3 1.808780 <

0.0001
Θ1

3

-
0.57836 0.6401

Φ0
4 0.966328 0.0682 Φ0

5 0.737177 <

0.0001

Φ1
4

-
1.09234 0.0476 Φ1

5 0.133177 0.0118

Φ0
5 1.194967 <

0.0001
Θ0

5

-
0.30042 0.1222

Φ1
5

-
0.26066 0.3303 Θ1

5

-
0.07193 0.1794

The matrix above shows the spatial weights between five
cities based on the results of the normalization of the cross-
correlation of inflation values. Each element outside the diag-
onal describes how much influence inflation from one city has
on another city. A positive weight value indicates that when
inflation in a city increases, inflation in other cities will also
increase, while a negative weight value indicates that if inflation
in a city increases, inflation in other cities will decrease.

Figure 2. OLS Residual MCCF Plot of Inflation Data

3.10 Parameter Estimation with OLS Method
Parameter estimation using the OLS method is done by mini-
mizing the sum of the squares of the residuals. The GSTARMA

model orders used are AR(1) and MA(1) and the spatial order
is 1. Table 7 shows the results of parameter estimation using
the OLS method with uniform location weights on infation data,
while Table 8 displays that estimation with normalized location
weights for cross-correlation.

Figure 3. Uniform Location Weighted Normality Plot of
Inflation

Table 8. OLS Estimation with Normalized Location Weights for
Cross-Correlation on Inflation Data

Parame-
ter

Estimated
Value

𝑝 −

𝑣𝑎𝑙𝑢𝑒

Parame-
ter

Estimated
Value

𝑝 −

𝑣𝑎𝑙𝑢𝑒

Φ0
1 0.145914 0.7124 Θ0

1

-
0.61572

<

0.0001

Φ1
1 0.632313 0.0361 Θ1

1 1.268331 0.0061

Φ0
2 0.002609 0.9934 Θ0

2

-
0.58052 0.1314

Φ1
2

-
0.32070 0.3153 Φ1

1 6.799812 0.0001

Φ0
3

-
0.26469 0.4282 Θ0

3 0.578443 0.1227

Φ1
3 0.818914 0.0020 Θ1

3 0.813226 <

0.0001

Φ0
4 0.704610 0.0650 Φ0

5

-
0.09106 0.0127

Φ1
4

-
0.75401 0.0050 Φ1

5

-
0.43436 0.0195

Φ0
5 1.00650 <

0.0001
Θ0

5

-
1.12199 0.0091

Φ1
5

-
1.18155 0.0087 Θ1

5 0.05506 0.0812

Based on Table 7 and Table 8, the estimated values of the
model parameters obtained using the OLS method can be seen.
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In the table, there are several significant and insignificant au-
toregressive and moving average parameters.

3.11 Parameter Estimation with SUR Method
Estimation of the Seemingly Unrelated Regression (SUR) model
can be done using the Generalized Least Square (GLS) method.
Figure 2 shows the results obtained from the residual MCCF plot,
and it shows that there are several significant lags marked with
the symbols (+) and (-).

Based on Figure 2 it can be concluded that the residuals pro-
duced by the OLS method have a correlation between equations
which causes the OLS method to be less effective in estimat-
ing parameters so the SUR method is used. Table 9 and Table
10 display the results of parameter estimation using the SUR
method.

Table 9. Estimation of SUR with Uniform Location Weights on
Inflation Data

Param-
eter

Estimated
Value

𝑝 −

𝑣𝑎𝑙𝑢𝑒

Param-
eter

Estimated
Value

𝑝 −

𝑣𝑎𝑙𝑢𝑒

Φ0
1

-
0.09426 0.5736 Θ0

1

-
0.238015 0.2346

Φ1
1 0.664498 <

0.0001
Θ1

1

-
0.23482 0.0783

Φ0
2 0.089962 0.5445 Θ0

2

-
0.37320 0.0371

Φ1
2

-
0.46553 0.0001 Φ1

1 1.682428 0.0490

Φ0
3

-
0.09909 0.6659 Θ0

3

-
0.23883 0.3877

Φ1
3 0.669632 <

0.0001
Θ1

3

-
0.17296 0.8468

Φ0
4 0.273184 0.2206 Φ0

5 0.918074 <

0.0001

Φ1
4

-
0.60236 0.0170 Φ1

5 0.042499 0.2619

Φ0
5 0.817601 <

0.0001
Θ0

5

-
0.48031 0.0008

Φ1
5

-
0.23801 0.2346 Θ1

5 0.002286 0.9585

Based on Table 9 and Table 10, the estimated values of the
model parameters obtained using the SUR method can be seen.
In the table, there are several significant and insignificant au-
toregressive and moving average parameters. Although there
are several insignificant parameters, these parameters are still
included in the model because they consider the influence of
the weight of each region. Therefore, in this study, insignificant
parameters are still used in the forecast.

3.12 GSTARMAModel Diagnostic Testing
Model diagnostic tests are conducted to assess the feasibility
of a model in forecasting. Two assumptions required in model

Table 10. Estimation of SUR with Normalized Location Weights
of Cross-Correlation on Inflation Data

Param-
eter

Estimated
Value

𝑝 −

𝑣𝑎𝑙𝑢𝑒

Param-
eter

Estimated
Value

𝑝 −

𝑣𝑎𝑙𝑢𝑒

Φ0
1 0.627008 0.0116 Θ0

1

-
0.104348

<

0.0001

Φ1
1 0.273347 0.1372 Θ1

1 0.055228 0.8766

Φ0
2

-
0.45893 0.6644 Θ0

2 0.070420 0.7799

Φ1
2 0.041115 0.8384 Φ1

1 3.989007 0.0005

Φ0
3 0.395338 0.0465 Θ0

3

-
0.04434 0.8598

Φ1
3 0.390306 0.0035 Θ1

3

-
1.13174 0.3390

Φ0
4

-
0.06439 0.7590 Φ0

5 1.008778 <

0.0001

Φ1
4

-
0.22888 0.1442 Φ1

5 0.001229 0.9653

Φ0
5 0.990792 <

0.0001
Θ0

5

-
0.53324 0.0004

Φ1
5 0.114199 0.2663 Θ1

5

-
0.00377 0.8929

Figure 4. The plot of Normality of Location Weights
Normalized Cross-Correlation of Inflation

diagnostic tests are that the residuals are white noise and follow
a multivariate normal distribution.

3.12.1 Multivariate Normality Test for Inflation Data
The normality test is carried out to assess whether the residuals
of the model are normally distributed or not. The multivariate
normality test can be done by looking at the 𝑞 − 𝑞 plot. Data
is said to be normally distributed if the residual plot spreads
around the diagonal line. Figure 3 presents the residual plot
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of the GSTARMA model with uniform location weights, while
Figure 4 presents the cross-correlation normalization.

Based on Figure 3 and Figure 4, the residual plot of the
GSTARMA model with uniform location weights and cross-
correlation normalization shows a pattern that tends to follow
and is around the diagonal line. Therefore, it can be concluded
that the residual plot of the GSTARMA model is distributed
normally multivariately.

Table 11. Results of the Portmanteau Test with Uniform Loca-
tion Weights for Inflation Data

Lag 𝜒 2
𝑁 2(𝑘)

𝑄 𝑝 − 𝑣𝑎𝑙𝑢𝑒

2 37.65 25.03 0.4605
3 67.50 48.61 0.5292
4 96.22 81.64 0.2806
5 124.34 123.54 0.0557
6 152.09 147.63 0.0815

3.12.2 White Noise Test of Inflation Data
The assumption that the residuals are white noise can be shown
by looking at the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 of the portmanteau test as follows.
Table 11 and Table 12 show the results.

Table 12. Portmanteau Test Results with Normalized Location
Weights for Cross-Correlation of Inflation Data

Lag 𝜒 2
𝑁 2(𝑘)

𝑄 𝑝 − 𝑣𝑎𝑙𝑢𝑒

2 37.65 25.25 0.4486
3 67.50 46.47 0.6158
4 96.22 77.77 0.3907
5 124.34 123.10 0.0584
6 152.09 146.28 0.0938

Based on Table 11 and Table 12, it can be seen that the p-
value is greater than the value of 𝛼 = 0.05 and the value of
𝑄 < 𝜒 2

𝑁 2(𝑘)
, which means that 𝐻0 is not rejected. Therefore, it

can be concluded that the residuals of the GSTARMA model
have met the white noise assumption.

3.13 Selecting the Best Model for Inflation Data
The selection of the best GSTARMA model is done by looking at
the smallest RMSE value of the model formed. Table 13 shows
the results.

Based on Table 13, it is known that the smallest RMSE value
is obtained from the model with cross-correlation normalization
location weights, therefore the best GSTARMA model is the one
that uses cross-correlation normalization location weights.

3.14 Inflation Rate Forecasting
To obtain forecasting results in the GSTARMA model, a back
transformation is required because the data used for modeling
and forecasting are Box-Cox transformed data. Table 14 displays
the form of the back transformation of each data at each location.

Table 13. Results of Calculation of RMSE Value of Inflation Data

Location Uniform Location
Weights

Normalized
Location Weights
Cross-Correlation

Bulukumba 0.1557 0.1288
Watampone 0.2408 0.2540
Makassar 0.2656 0.2259
Pare-pare 0.2578 0.2555
Palopo 0.2655 0.2836

Table 14. Back Transformation of Inflation Data at Each Loca-
tion

Location Transformation
Form

Reverse
Transformation

Bulukumba ln 𝑍∗
𝑡 𝑒𝑍

∗∗
𝑡 − 2

Watampone ln 𝑍∗
𝑡 𝑒𝑍

∗∗
𝑡 − 2

Makassar
√
𝑍∗
𝑡 (𝑍∗∗

𝑡 )
2
− 2

Pare-pare - 𝑍∗
𝑡 − 2

Palopo 1
√
𝑍∗
𝑡

1

𝑍∗∗
𝑡

2
− 2

3.15 Forecasting Using the Best Model
After getting the best model based on the smallest RMSE value,
the next step is to forecast the inflation value for the next few
periods. Figure 5 shows the results of the inflation value forecast
for each location, and Table 13 gives the detail.

Figure 5. Inflation Forecast Plot of Five Cities in South
Sulawesi Province

Figure 5 shows the results of inflation forecasting in five
cities in South Sulawesi Province with a relatively similar pattern,
although there are still fluctuations between months. In general,
data movements in each city follow a similar pattern without any
high spikes in one particular city. This shows that the forecasting
model captures a stable pattern in the five cities analyzed.
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Table 15. Inflation Value Forecasting

Month Bulu-
kumba

Watam-
pone

Makas-
sar

Pare-
pare Palopo

Nov
2024 0.1869 0.2803 0.1413 0.2080 0.0965

Dec
2024 0.3343 0.2583 0.2536 0.1522 0.2018

Jan
2025 0.2985 0.1807 0.2237 0.1689 0.1834

Feb
2025 0.1594 0.1705 0.1190 0.2827 0.0750

Mar
2025 0.2463 0.1763 0.1886 0.2176 0.1364

Apr
2025 0.2260 0.2242 0.1732 0.0700 0.1309

May
2025 0.1557 0.2680 0.1208 0.1743 0.0764

Jun
2025 0.2707 0.2465 0.2118 0.2935 0.1627

Jul
2025 0.2707 0.2153 0.2105 0.2571 0.1704

Aug
2025 0.1912 0.1942 0.1514 0.1902 0.1074

Sep
2025 0.2637 0.2020 0.2050 0.2136 0.1538

Oct
2025 0.2644 0.2355 0.1959 0.2507 0.1517

Nov
2025 0.2112 0.2530 0.1531 0.2240 0.1072

Dec
2025 0.2730 0.2448 0.2017 0.2359 0.1521

Table 15 shows the inflation forecast values for the next 14
periods. The highest inflation prediction value in Bulukumba
City occurred in December 2024, while Watampone City had the
highest inflation prediction in November 2024. Makassar City
had the highest inflation prediction in December 2024. Pare-pare
City had the highest inflation prediction in June 2025 and Palopo
City had the highest inflation prediction in December 2024.

4. CONCLUSIONS

Based on the findings of the analysis, we conclude that the ap-
propriate GSTARMA model for predicting inflation in five cities
is GSTARMA (1,0,1) with the order of the AR vector, MA vector,
and spatial order equal to one. The appropriate location weights
for the GSTARMA model in this analysis are the normalized
location weights of cross-correlation. Moreover, the inflation in
five cities is influenced by inflation in the previous period and
inflation in one city is influenced by inflation in four other cities
in the previous period.
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