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Predicting vehicle fuel consumption is an important aspect in improving energy efficiency
and supporting sustainable transportation. This study aims to compare the performance
of Support Vector Regression (SVR) and Random Forest Regression (RFR) algorithms in
predicting combined vehicle fuel consumption (COMBINED, a combination of 55% urban
and 45% highway). The Canadian government’s Fuel Consumption Ratings dataset was
used, with 2015-2023 data (9,185 entries) for training and testing, and 2024 data (764 entries)
for further testing. Pre-processing involved StandardScaler for numerical features and
OneHotEncoder for categorical features, followed by hyperparameter optimization using
Grid Search, resulting in optimal parameters: SVR (C=100, epsilon=0.5, gamma=1) and RFR
(n_estimators=200, max_depth=None, min_samples_split=2). Results show RFR is superior
with R? 0.8845, RMSE 0.9671, and MAE 0.6566, compared to SVR with R? 0.8648, RMSE 1.0462,
and MAE 0.7150. Evaluation on 2024 data and visualization of error distribution corroborate
the superiority of RFR. This study concludes RFR is more effective for COMBINED prediction,
although SVR is competitive post-optimization, and contributes to the selection of machine

learning models for green vehicle technology.
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1. INTRODUCTION

Climate change in recent decades has posed a huge threat to
humanity’s future. In recent years, consumption-based carbon
emissions have dominated studies on environmental challenges
and international trade [1]. In the era of globalization, environ-
mental issues and energy efficiency have become major pressing
concerns around the world. The overuse of fossil fuels has trig-
gered an increase in air pollution, greenhouse gas emissions, and
accelerated the rate of climate change, with the transportation
sector being a significant contributor to these issues. Carbon
dioxide (CO,) is a naturally occurring greenhouse gas, mean-
ing it traps heat in the Earth’s atmosphere. While essential for
life on Earth, increased CO, levels due to human activities lead
to global warming and climate change, with potential impacts
on human health, ecosystems, and the environment. There are

many researches regarding the effect of CO, emission for human
life including [2, 3, 4, 5] and many more.

Carbon emissions have enormous influence on Indonesia’s
ecology and economy. While Indonesia has committed to lower-
ing emissions and made some progress, there are still issues in
policy implementation and enforcement, notably in matching
emission reduction policies with economic development and
energy security.

This condition emphasizes the need for serious efforts to
improve vehicle fuel use efficiency through government policies
and technological innovations in the automotive industry. The
Indonesian government has taken steps such as encouraging the
use of biofuels and energy efficiency technologies [6], while in
the logistics sector, some companies have started to develop pre-
diction systems to anticipate fuel theft by drivers, and optimize
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fuel usage management [7]. Accurate prediction systems are key
to helping companies and regulators monitor fuel consumption,
reduce operational costs, and mitigate environmental impacts,
thus supporting the national sustainability agenda. Not only
do carbon emissions have a huge impact on the environment,
they also affect the Indonesian economy. The impact of CO,
emissions and exports on Indonesian economic growth had been
investigated by [8].

Fuel usage varies substantially according to vehicle type. In
general, smaller and lighter vehicles, such as compact cars and
hybrids, have higher fuel efficiency than bigger vehicles like
trucks and SUVs. Diesel engines are often more fuel efficient
than gasoline engines. Vehicle fuel consumption is an important
aspect of the automotive industry that is closely related to en-
ergy efficiency and environmental impact. With the increasing
global awareness to reduce greenhouse gas emissions, research
focusing on fuel consumption prediction is increasingly rele-
vant to support the development of environmentally friendly
technologies. Precise predictions allow vehicle manufacturers to
design more efficient engines and help users optimally manage
fuel consumption [9].

Fuel consumption is influenced by a variety of complex fac-
tors, including traffic conditions, environmental factors, vehicle
specifications (such as engine and transmission type), and driver
behavior [10]. This complexity demands the development of
predictive models capable of handling non-linear data and the
relationships between variables that influence each other often
pose a challenge to simple statistical approaches such as linear
regression. In recent years, machine learning has emerged as
a promising approach to modeling such phenomena, offering
flexibility in capturing patterns that are difficult to analyze man-
ually. Several studies provide prediction and strategies to use
fuel more efficiently, including [11, 12, 13], and others.

Machine learning algorithms are collections of instructions
that allow computers to learn from data and improve their perfor-
mance on certain tasks without requiring explicit programming.
They are simply mathematical models that analyse data to detect
patterns, generate predictions, and classify it. These algorithms
are broadly classified as supervised, unsupervised, and reinforce-
ment learning, each having unique properties and uses. Sarker
[14] describes the fundamentals of numerous machine learning
techniques and their relevance in various real-world application
fields, such as healthcare, e-commerce, agriculture, cybersecurity
systems, and many more.

Two popular machine learning algorithms for regression
tasks are Support Vector Regression (SVR) and Random Forest
Regression (RFR). SVR, derived from Support Vector Machine, is
designed to find the optimal hyperplane that minimizes predic-
tion error in a transformed feature space, often using a Radial
Basis Function (RBF) kernel [15].

The advantage of SVR lies in its ability to handle non-linear
data, although its performance is highly dependent on hyperpa-
rameter settings such as C (regularization), epsilon (tolerance
margin), and gamma (kernel parameters). In contrast, RFR is an
ensemble method that combines results from multiple decision
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trees to improve accuracy and reduce the risk of overfitting [16].

RFR excels at managing data with noise and categorical fea-
tures, and provides insights through feature importance, but
requires optimization of hyperparameters such as the number of
trees (n_estimators) and tree depth (max_depth). The selection
and optimization of these two algorithms is key to achieving ac-
curate predictions, especially in the context of fuel consumption
involving multiple variables.

The Fuel Consumption Ratings dataset from the Canadian
government forms the main basis of this research, providing
comprehensive data on the fuel consumption of vehicles, both
private and commercial. The dataset includes variables such as
engine type, engine capacity, fuel type, transmission, vehicle
weight, exhaust emissions, as well as technical information such
as year, model and manufacturer. This diversity of data enables
comparative analysis between vehicles with different specifi-
cations, providing a clear picture of the factors that influence
variations in fuel consumption [17].

Although originating from Canada, this dataset is relevant
for application in Indonesia given similar vehicle characteristics,
such as comparable fuel use and similar technical specifications.
Adapting this prediction model can support more efficient and
environmentally friendly transportation policy planning, includ-
ing in the context of logistics in Indonesia.

The literature review shows that previous studies have com-
pared SVR and RFR in various contexts. Tualeka [18] found that
SVR with RBF kernel excels in credit risk prediction, with a Mean
Absolute Percentage Error (MAPE) of 11.63% and Mean Squared
Error (MSE) of 0.2486, compared to RFR which tends to overfit-
ting on test data. In contrast, Penalun et al. [19] reported that
RFR was more accurate in predicting evaporation rate, with an
R? of 0.81 and an RMSE of 0.53, compared to SVR with an R? of
0.56 and an RMSE of 0.81. However, specific research on predict-
ing vehicle fuel consumption using these two algorithms is still
limited, especially with a focus on combined fuel consumption
in 55% urban areas and 45% inter-city highways.

The importance of this research lies in two aspects. Theo-
retically, this research expands the understanding of the perfor-
mance of SVR and RFR in modeling nonlinear data, with a focus
on improving accuracy through hyperparameter optimization
using Grid Search. This is in line with the conclusion put forward
by Yang et al in [20], which shows that the utilization of mul-
tidimensional data-based machine learning models effectively
improves the accuracy of vehicle fuel consumption prediction.
The results can be used by the automotive industry to design
more efficient vehicles and by the logistics sector, to detect fuel
theft by drivers and optimize operations. With a focus on the fuel
consumption of combined city streets and inter-city highways,
this research provides practical insights for everyday vehicle
usage conditions.

This study aims to analyse and compare the performance of
SVR and RFR in predicting vehicle fuel consumption using Fuel
Consumption Ratings dataset, with Grid Search optimization,
validation on recent data, and error distribution analysis. The
results are expected to support the development of environmen-
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Table 1. Description of Dataset Variables

Data Data Type Description
Covers transmission type and gear count: A = Automatic, AM = Automated Manual, AS =
Transmission Mixed Automatic with Selective Shift, AV = Continuously Variable, M = Manual; includes number
of gears.
Type of fuel used: X = Regular gasoline; Z = Premium gasoline; D = Diesel; E = E85; N =
Fuel type Categorical ~ Natural Gas. For Flexible Fuel Vehicles (FFV), fuel consumption values are provided for both
gasoline and E85.
Make Categorical Vehicle brand.
Model Categorical Vehicle model.
Vehicle class Categorical Vehicle class.
Year Numeric Year the vehicle was manufactured.
Engl(rie; size Numeric Engine size in litres.
Cylinders Numeric Number of engine cylinders.
CO, rating Numeric CO, emission rating, rated on a scale from 1 (worst) to 10 (best).
Smog rating Numeric Smog rating, rated on a scale from 1 (worst) to 10 (best).
CO,
emissions Numeric CO, emissions in grams per km.
(g/km)
Highway . . . -
(L/100 km) Numeric Fuel consumption on highway roads in litres per 100 km.
ity (L/1 A .
Clt};{in)/ 00 Numeric Fuel consumption on city roads in litres per 100 km, includes stop-and-go traffic.
Combined . . L
(mpe) Numeric Combined fuel consumption in miles per gallon.
(i(/)féglﬁref) Numeric Combined fuel consumption in litres per 100 km (55% city and 45% highway driving).

tally friendly vehicle technology and sustainable transportation
policies.

2. METHODS

This study compares the performance of Support Vector Regres-
sion (SVR) and Random Forest Regression (RFR) to predict the
combined (COMBINED) fuel consumption, calculated as 55%
CITY + 45% HIGHWAY. The approach uses machine learning
with Grid Search optimisation. The Fuel Consumption Ratings
dataset from the Canadian government was used, with 9,185 en-
tries (2015-2023) for training and initial testing, and 764 entries
(2024) for further testing. Figure 1 shows the flowchart of the
research.

Table 2. Tuned Parameters and Optimal Value of SVR Model

Parameter Tested Value Optimal Value
C 0.1, 1, 10, 100 100
Epsilon 0.01, 0.1, 0.2, 0.5 0.5
Gamma ’scale’; auto’, 0.1, 1 1

The process includes data collection, pre-processing, model
building, optimisation, evaluation, model saving, retesting, and

© 2024 The Authors.

error analysis. The research was conducted using a laptop with
specifications (Intel Core i5, 16 GB RAM, 512 GB SSD, Windows
11) and the model computing process was carried out using
Google Collaboratory, Python 3.9, and libraries scikit-learn, pan-
das, matplotlib, seaborn, numpy.

2.1 Dataset and Data Source

The Fuel Consumption Ratings dataset is taken from the official
website of the Canadian government, containing 9,949 entries
(2015-2024). The data is divided into 9,185 entries (2015-2023) for
initial training/testing and 764 entries (2024) for advanced testing.
Table 1 displays the dataset description of fuel consumption
ratings.

2.2 Data Pre-Processing
The 2015-2016 data was removed because the SMOG RATING
and CO, RATING attributes were empty, leaving 6,951 entries
(2017-2023) and 764 entries (2024). Categorical features were con-
verted with OneHotEncoder (drop="‘first’) to prevent duplication
of information.

Numerical features were normalised using StandardScaler.
The 2017-2023 data was split 80% training (5,561 entries) and 20%
testing (1,390 entries) using train_test_split with random_state=42.
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Figure 1. The Flowchart of the Research

2.3 Model Building

The prediction model was built using the scikit-learn library,
with a Support Vector Regression (SVR) algorithm implement-
ing a Radial Basis Function (RBF) kernel and parameters C = 1,
epsilon = 0.1, and gamma = ‘scale’ to accommodate non-linear
data characteristics. Meanwhile, the Random Forest Regression
(RFR) model is configured with n_estimators = 100, max_depth
= None, and min_samples_split = 2 to produce a flexible model
that can handle data complexity.

The entire data transformation process is performed consis-
tently through a scikit-learn pipeline that integrates Standard-
Scaler for numerical features and OneHotEncoder for categorical
features, ensuring uniform data during both training and testing.

2.4 Hyperparameter Optimisation

Hyperparameter optimisation is performed to improve model
performance in the training and prediction process. The two
models used in this study, namely Support Vector Regression
(SVR) and Random Forest Regression (RFR), each require pa-
rameter adjustments in order to produce an optimal prediction
model. The optimisation process is performed using the Grid
Search technique, which evaluates a combination of parameter
values thoroughly based on the highest accuracy score obtained
from cross-validation.

In SVR, tests were conducted on three main parameters,
namely the value of C (regulation), epsilon (error threshold al-
lowed in the margin), and gamma (radial basis function kernel
coefficient). Table 2 shows the tuned parameters and optimal
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value of SVR Model, while Table 3 displays the range of values
tested and the best configuration.

Table 3. Tuned Parameters and Optimal Value of RFR Model

Parameter Tested Value  Optimal Value
n_estimators 50, 100, 200 200
max_depth None, 10, 20 None
min_samples_split 2,5,10 2

Meanwhile, in the RFR model, three main parameters were
explored, namely n_estimators (number of trees in the ensemble),
max_depth (maximum depth of the tree), and min_samples_split
(minimum number of samples to split internal nodes). Table 3
shows the results of parameter exploration for RFR.

From the test results, the optimal parameter combinations
for SVR and RFR showed improved predictive performance on
vehicle fuel consumption.

2.5 Model Evaluation

Model performance evaluation is conducted using three main
metrics, namely the coefficient of determination (R?), Root Mean
Squared Error (RMSE), and Mean Absolute Error (MAE). These
three metrics are commonly used measures to assess the accuracy
of regression models.

The coefficient of determination R* measures the proportion
of variance of the dependent variable that can be explained by
the model. R? values range from 0 to 1, with higher values
indicating a more accurate model. According to Chicco et al.,
the coefficient of determination is more informative than other
error metrics in regression evaluation [21].

RMSE calculates the square root of the mean square of the
difference between the actual and predicted values. This metric
is sensitive to large errors and imposes a larger penalty on pre-
dictions that are far off the actual value, whereas MAE measures
the average of the absolute value of errors, and is more stable
against outliers because all errors are weighted equally [22].

In this study, the model was trained and tested using 5,561
data entries from the period 2017 to 2023, while 1,390 entries
were used as test data. The selection of these three metrics was
done to provide a thorough evaluation of the regression model
performance.

The model with the best parameters was saved using joblib,
and then tested again using 764 data entries for 2024. The predic-
tion error was calculated as the difference between the predicted
value of the saved model and the actual value of the COMBINED
variable in the 2024 data, and then further analysed through bar
plot visualisation to illustrate the error distribution in detail.

2.6 Data Analysis

Analysis includes correlation matrix for numerical features (EN-
GINE SIZE, CYLINDERS, CITY, HIGHWAY, COMBINED, EMIS-
SIONS) using pandas corr() with Pearson method, visualised
as heatmap with seaborn (v0.12.2), scale -1 to 1, annotation of
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correlation values. Error distribution visualised with matplotlib
(v4.0.0) using a 30 bin histograms, displaying the average error
for SVR and RFR on the 2024 data.

3. RESULTS AND DISCUSSION

Figure 2 displays the relationship between numerical features
was analysed in this study using a correlation matrix with the
Pearson method, visualised as a heatmap for ENGINE SIZE,
CYLINDERS, CITY, HIGHWAY, COMBINED, EMISSIONS, CO,
RATING, and SMOG RATING features.

1.0
EMGINE SIZE
- 075
CYLINDERS
[=E.7]
Iy
- 02%
HTY
= Q00
coMB
- =035
EMISSIONS
= —0.50
L ¥F]
=05
SMOG - 041
g B

ENGINE SIZE -

CYLINDERS
Iy -

HY

COMB
EMISSIONS -

Figure 2. Correlation Matrix

Figure 2 shows that the highest correlation is between COMB
and CITY (0.99), followed by COMB and HWY (0.97), and COMB
and EMISSIONS (0.95).This confirms that combined fuel con-
sumption is strongly influenced by consumption in urban areas
and highways, in line with its definition as a composite of CITY
(55%) and HWY (45%). The strong correlation with EMISSIONS
suggests that increased fuel consumption has a direct impact on
exhaust emissions, which is relevant in the context of emissions
regulation and vehicle efficiency.

A high correlation was also observed between ENGINE SIZE
and CYLINDERS (0.92), indicating multicollinearity between en-
gine dimensions and cylinder configuration. Both contribute to
increased fuel consumption, as vehicles with larger engines and
more cylinders are generally high-performing but less efficient.

In contrast, negative correlations are shown by CO, to COMB
(-0.95) and SMOG to COMB (-0.43). These negative values in-
dicate that vehicles with higher fuel consumption tend to have
worse CO, and SMOG ratings, meaning greater environmental
impact. This consistent negative correlation is also reflected
against other features such as CITY and HWY, indicating that
the environmental rating is inversely proportional to fuel con-
sumption.

These correlations suggest that features such as EMISSIONS,
ENGINE SIZE, and CYLINDERS are highly influential in the
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prediction of fuel consumption, and are important indicators
in the evaluation of vehicle performance and environmental
impact. In addition, the detected correlation pattern supports
the importance of careful feature selection to avoid redundancies
and maintain the stability of the predictive model.

Table 4. Model Performance Before and After Tuning (Target:
COMBINED)

Model Status  R? RMSE MAE  Main Parameter
SVR  before 0.8951 0.8953 0.6116 Default
SVR  after 0.9171 0.7958 0.5675 C:IO;);lgzo.S,
RFR  before 0.9341 0.7093 0.4823 Default
RFR  after 09340 07101 0.4829 D|-cstimators=200,

max_depth=None

3.1 Comparison of Model Performance

The performance of Support Vector Regression (SVR) and Ran-
dom Forest Regression (RFR) was evaluated against the COM-
BINED target, using the 2017-2023 period data (before and after
tuning), as well as the 2024 data. Table 4 shows the evaluation
results based on the R?, RMSE, and MAE metrics for model per-
formance before and after tuning, while Table 5 shows for model
performance using year 2024 data.

Table 5. Model Performance using Year 2024 Data (Target: COM-
BINED)

Model R? RMSE MAE
SVR 0.8649 1.0462 0.7151
RFR 0.8845 0.9671 0.6566

From both tables, it can be concluded that RFR shows a more
consistent and superior performance in predicting combined
fuel consumption, both before and after tuning, as well as when
tested on actual 2024 data. Meanwhile, although SVR improved
after tuning, it still performed below RFR on the actual data.

The decrease in model performance on the 2024 data is due
to the shift in data patterns, such as the increase in vehicle tech-
nology efficiency which makes the distribution and relationship
between features change compared to the 2017-2023 training
data.

SVR experienced a greater decline due to its reliance on the
RBF kernel function, which tends to be less flexible in adjusting
to new data variations. In contrast, RFR is more resilient due to its
ensemble-based approach, so it is able to maintain performance
even when the data at hand has different characteristics.

3.2 The Error Distribution

Figure 3 and Figure 4 show the distribution of SVR error and
RFR of prediction data vs actual data for the COMBINED target.
Figure 3 shows the bar plot of the SVR error with an average
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Distribusi Error RFR (Total Data: 764, Mean: 0.66, Min: 0.00, Max: 6.08 g/km)
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Figure 4. Error Distribution of Predicted vs Actual SVR and RFR (EMISSIONS)

error of 0.72, the graph shows there are 599 data that have a
COMBINED target prediction error in the range of 0-1.

The RFR error bar plot with an average error of 0.66, shows
there are 593 data that have a COMBINED target prediction
error with a range of 0-1. RFR error with more data concentrated
around zero explains the lower RMSE and MAE compared to
SVR, indicating more accurate predictions.

In addition to creating a prediction model for combined city
and inter-city highway fuel consumption, a prediction model
for EMISSIONS was also created, the error distribution of SVR
and RFR of predicted data vs actual data for target emissions in
figure 4, was visualised to understand the error pattern.

Figure 4 shows the SVR error bar plot with an average error
of 16.34, where there are 272 data that have target emissions
prediction errors in the range of 0-5. Meanwhile, the RFR error
bar plot has an average error of 15.40 with 234 data in the same

© 2024 The Authors.

error range.

Although most of the data is concentrated in the low range,
the error distribution of the target emissions is wider than that
of COMBINED, with higher maximum values. This suggests that
predicting emissions is more difficult than COMBINED due to
more complex variables and a wider range of values, resulting
in generally higher errors.

3.3 Discussion of Key Findings

RFR consistently outperformed SVR in predicting COMBINED
and EMISSIONS at all stages of evaluation, including before tun-
ing, after tuning, and in testing the prediction model using 2024
data. RFR’s advantage lies in its ensemble approach, which effec-
tively handles non-linear relationships as well as relationships
between features, such as ENGINE SIZE and CYLINDERS that
are highly correlated (0.87).

Page 65 of 67



Nurdin et. al.

Hyperparameter tuning with Grid Search had more impact
on SVR, increasing the COMBINED R? from 0.8951 to 0.9171,
as the optimal parameters (C=100, £=0.5, y=1) allowed SVR to
capture non-linear patterns better. However, RFR remains more
reliable with a stable R? at 0.9340-0.9341, demonstrating its sta-
bility against tuning. The drop in performance in the prediction
model using the 2024 data (RFR: R? 0.8845, SVR: R? 0.8649) is
due to the change in data patterns, which is not fully reflected
in the 2017-2023 training data.

This decrease is more significant in SVR due to the depen-
dency of the RBF kernel on the training data, whereas RFR is
more adaptive. To improve performance, the training data needs
to be updated with more recent and representative data, and
additional hyperparameter exploration can be done to adapt the
model to the dynamics of vehicle technology.

3.4 Implications and Application

More accurate RFR could be applied in the automotive industry
to design fuel-efficient vehicles, in Indonesia’s logistics sector
where it could be useful to detect fuel theft, and for environmen-
tal policy to set fuel efficiency standards, supporting the 2050
zero emissions target.

4. CONCLUSIONS

This study concludes that Random Forest Regression (RFR) per-
forms better than Support Vector Regression (SVR) in predicting
vehicle fuel consumption, in line with the objective to compare
the two models in handling fuel consumption data from the Fuel
Consumption Ratings dataset. The findings demonstrate the
effectiveness of the models in handling non-linear relationships
between features, with RFR proving to be more reliable thanks
to the ensemble approach that improves the stability of the pre-
dictions. Although both models face challenges on recent data,
RFR remains consistently superior.

The contribution of this research lies in providing empirical
evidence of RFR’s superiority in predicting fuel consumption and
emissions, while opening up opportunities to develop models
that are more adaptive to data dynamics, and support innovation
in the automotive, logistics and environmental policy sectors for
global sustainability.
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