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Abstract
Let  be a set and 𝜑 an equivalence relation on  . The pair ( , 𝜑) forms an approximation
space, where the relation 𝜑 partitions  into mutually disjoint equivalence classes. For any
subset 𝐵′ ⊆  , the lower approximation 𝐴𝑝𝑟(𝐵′) is defined as the union of all equivalence
classes entirely contained in 𝐵′, while the upper approximation 𝐴𝑝𝑟(𝐵′) is the union of
all equivalence classes that have a non-empty intersection with 𝐵′. The subset 𝐵′ is called
a rough set in ( , 𝜑) if 𝐴𝑝𝑟(𝐵′) ≠ 𝐴𝑝𝑟(𝐵′). If, in addition, 𝐵′ satisfies certain algebraic
conditions, it is termed a rough module. This paper investigates the construction of rough
quotient rings and rough quotient modules within such approximation spaces. The approach
is developed using finite sets to facilitate the algebraic formulation and analysis of these
rough structures.
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1. INTRODUCTION

Rough set theory, introduced by Pawlak, is a mathematical frame-
work developed to manage vagueness and uncertainty, particu-
larly within information systems, data analysis, machine learn-
ing, and decision support systems. Since its inception, the theory
has been widely studied and applied across numerous disciplines.
From an algebraic perspective, its foundational concepts have
been generalized and extended to broader mathematical struc-
tures, including non-classical logics, ordered systems, and classi-
cal algebraic frameworks such as groups, rings, and modules.

Bagismaz and Ozcan [1] pioneered the notion of rough semi-
groups within the framework of approximation spaces, estab-
lishing a foundation for exploring algebraic structures under
uncertainty. Building on this foundation, Neelima and Isaac [2]
studied anti-homomorphisms in rough groups, shedding light
on the structural behavior of group elements under rough ap-
proximations. Wang and Chen [3] further contributed to this
area by analyzing properties of rough groups and demonstrating
their relevance to computer science applications, including data

mining and artificial intelligence.
Sinha and Prakash extended these ideas to module theory by

investigating structural properties of rough projective modules
[4], and subsequently introducing the concept of rough injective
modules [5], thereby offering a dual perspective and advancing
the development of a rough module theory analogous to the
classical theory over rings.

Earlier, Miao et al. [6] had conducted foundational research
on rough groups, subgroups, and homomorphisms, while Zhang
et al. [7] explored rough modules and quotient modules over
rough rings. Later, Isaac and Paul [8] introduced the concept of
rough 𝐺-modules and studied their structural properties. Nu-
graha et al. [9] examined applications of rough set theory to
group structures, followed by Hafifulloh et al. [10], who studied
properties of rough 𝑉 -coexact rows in rough groups. Parallel
investigations into rough rings were carried out by Agusfrianto
et al. [11], who explored rough rings, rough subrings, and rough
ideals. This was extended by Agusfrianto and Ambarwati [12],
who characterized properties of rough ideals in rough rings.
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Yanti et al. [13] applied rough set theory to projective mod-
ules, forming the basis for rough projective modules and their
associated properties.

The study of rough modules over rings was initiated by
Davvaz and Mahdavipour [14], and further advanced by Zhang
et al. [7], Chen et al. [15], and Vijayabalaji et al. [16]. Recent
developments in 2024 include the work of Agusfrianto et al. [17],
who introduced rough bimodules, and Dwiyanti et al. [18], who
developed the concept of 𝑋 -sub-linearly independent elements
in rough groups. Fitriani et al. [19] proposed the rough 𝑋 -
sub exact sequence for rough modules over rough rings, Meyer
introduced soft and rough module [20], while Rahmawati et al.
[21] conducted a detailed investigation into rough submodules.

Despite the rich body of literature on rough algebraic struc-
tures, no study to date has specifically addressed the construction
and characterization of rough quotient modules over finite sets.
This research aims to fill that gap by characterizing rough quo-
tient modules over rough rings.

Therefore, we begin by presenting the definition of rough
quotient rings, accompanied by illustrative examples involving
finite sets and rough ideals. We then establish approximation
spaces for finite groups, rings, andmodules, and provide concrete
examples to elucidate these structures.

2. METHODS

This study employs a theoretical approach within the framework
of abstract algebra and rough set theory to characterize rough
quotient modules over rough rings on finite sets. It begins with
basic definitions of modules, rough rings, and lower and upper
approximations in finite approximation spaces. Rough quotient
modules are constructed using suitable equivalence relations. We
also provide examples to illustrate rough module constructions,
with proofs carried out using algebraic methods and rough set-
theoretic reasoning.

3. RESULTS AND DISCUSSION

Given a rough ring 𝑅 with operations + and ⋅, and a rough ideal
𝑉 of 𝑅. Let 𝑅/𝑉 = {𝑝 = 𝑝 + 𝐴𝑝𝑟(𝑉 ) ∣ 𝑝 ∈ 𝑅}. We define
addition and multiplication on 𝑅/𝑉 as follows: 𝑝1 + 𝑝2 = (𝑝1 +
𝐴𝑝𝑟(𝑉 )) + (𝑝2 + 𝐴𝑝𝑟(𝑉 )) = (𝑝1 + 𝑝2) + 𝐴𝑝𝑟(𝑉 ) = 𝑝1 + 𝑝2 and
𝑝1 ⋅𝑝2 = (𝑝1+𝐴𝑝𝑟(𝑉 ))(𝑝2+𝐴𝑝𝑟(𝑉 )) = (𝑝1𝑝2)+𝐴𝑝𝑟(𝑉 ) = 𝑝1 ⋅ 𝑝2,
for every 𝑝1 + 𝐴𝑝𝑟(𝑉 ), 𝑝2 + 𝐴𝑝𝑟(𝑉 ) ∈ 𝑅/𝑉 . We will show that
⟨𝑅/𝑉 , +, ⋅⟩ forms a rough ring:

1. Let 𝑝1, 𝑝2 ∈ 𝑅/𝑉 . We have 𝑝1 + 𝑝2 = 𝑝1 + 𝑝2 ∈ 𝑅/𝑉 .
2. Let 𝑝1, 𝑝2, and 𝑝3 ∈ 𝑅/𝑉 , 𝑝1 +(𝑝2 +𝑝3) = 𝑝1 +(𝑝2 + 𝑝3) =

𝑝1 + (𝑝2 + 𝑝3) = (𝑝1 + 𝑝2) + 𝑝3 = 𝑝1 + 𝑝2 + 𝑝3 = (𝑝1 +
𝑝2) + 𝑝3.

3. There is 0 ∈ 𝑅/𝑉 such that 𝑝1 + 0 = 𝑝1 + 0 = 𝑝1 and
0 + 𝑝1 = 0 + 𝑝1 = 𝑝1, for every 𝑝1 ∈ 𝑅/𝑉 .

4. We can see from Table 2, there is −𝑝1 ∈ 𝑅/𝑉 such that
𝑝1+−𝑝1 = 𝑝1 + (−𝑝1) = 0 and −𝑝1+𝑝1 = (−𝑝1) + 𝑝1 = 0.

5. For every 𝑝1, 𝑝2 ∈ 𝑅/𝑉 , 𝑝1 + 𝑝2 = 𝑝1 + 𝑝2 = 𝑝2 + 𝑝1 =
𝑝2 + 𝑝1.

6. For every 𝑝1, 𝑝2 ∈ 𝑅/𝑉 , 𝑝1 ⋅ 𝑝2 = 𝑝1 ⋅ 𝑝2 ∈ 𝑅/𝑉 .

7. For every 𝑝1, 𝑝2, 𝑝3 ∈ 𝑅/𝑉 , 𝑝1 ⋅ (𝑝2 ⋅ 𝑝3) = 𝑝1 ⋅ (𝑝2 ⋅ 𝑝3) =
𝑝1 ⋅ (𝑝2 ⋅ 𝑝3) = (𝑝1 ⋅ 𝑝2) ⋅ 𝑝3 = (𝑝1 ⋅ 𝑝2) ⋅ 𝑝3 = (𝑝1 ⋅ 𝑝2) ⋅ 𝑝3.

8. For every 𝑝1, 𝑝2, 𝑝3 ∈ 𝑅/𝑉 , 𝑝1 ⋅ (𝑝2 + 𝑝3) = 𝑝1 ⋅ 𝑝2 + 𝑝3 =
𝑝1 ⋅ (𝑝2 + 𝑝3) = 𝑝1 ⋅ 𝑝2 + 𝑝1 ⋅ 𝑝3 = 𝑝1 ⋅ 𝑝2 + 𝑝1 ⋅ 𝑝3 = 𝑝1 ⋅
𝑝2+𝑝1 ⋅𝑝3 and (𝑝1+𝑝2)⋅𝑝3 = 𝑝1 + 𝑝2 ⋅𝑝3 = (𝑝1 + 𝑝2) ⋅ 𝑝3 =
𝑝1 ⋅ 𝑝3 + 𝑝2 ⋅ 𝑝3 = 𝑝1 ⋅ 𝑝3 + 𝑝2 ⋅ 𝑝3 = 𝑝1 ⋅ 𝑝3 + 𝑝2 ⋅ 𝑝3.

It is proven that ⟨𝑅/𝑉 , +, ⋅⟩ is a rough ring, called a rough quotient
ring.

Example 1. Let ( , 𝜑) be an approximation space with  = ℤ48.
We define an equivalence relation 𝜑 such that 𝑐1𝜑𝑐2 holds if and
only if 𝑐1 −48 𝑐2 = 4𝑙 with 𝑐1, 𝑐2 ∈  and 𝑙 ∈ ℤ. The equivalence
classes on the set  are obtained as follows:

𝑄1 = {0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44};
𝑄2 = {1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45};
𝑄3 = {2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46};
𝑄4 = {3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47}.

Let 𝑅 = {0, 8, 16, 24, 32, 40} be a subset of 𝑈 , 𝐴𝑝𝑟(𝑅) = 𝑄1 =
{0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44}, and 𝐴𝑝𝑟(𝑅) = ∅. We will
prove that 𝑅 is a rough ring with binary operation (+48, ⋅48).

Table 1. Table Cayley +48 on 𝑅

+48 0 8 16 24 32 40
0 0 8 16 24 32 40
8 8 16 24 32 40 0
16 16 24 32 40 0 8
24 24 32 40 0 8 16
32 32 40 0 8 16 24
40 40 0 8 16 24 32

According to Table 1, the key points are as follows.
1. For every 𝑝1, 𝑝2 ∈ 𝑅, 𝑝1 +48 𝑝2 ∈ 𝐴𝑝𝑟(𝑅).
2. For every 𝑝1, 𝑝2, 𝑝3 ∈ 𝑅, (𝑝1+48𝑝2)+48𝑝3 = 𝑝1+48(𝑝2+48𝑝3)

in 𝐴𝑝𝑟(𝑅).
3. There is 0̄ ∈ 𝐴𝑝𝑟(𝑅), then 𝑝1 +48 0̄ = 0̄ +48 𝑝1 = 𝑝1 for every

𝑝1 ∈ 𝑅.
4. According to Table 2, for every 𝑝1 ∈ 𝑅, there is 𝑝−1

1 ∈ 𝑅, then
𝑝1 +48 𝑝−1

1 = 𝑝−1
1 +48 𝑝1 = 0̄.

Table 2. Invers Table on 𝑅

𝑎 0 8 16 24 32 40
𝑎−1 0 40 32 24 16 8

5. For every 𝑝1, 𝑝2 ∈ 𝑅, then 𝑝1 +48 𝑝2 = 𝑝2 +48 𝑝1.
6. According to Table 3, for every 𝑝1, 𝑝2 ∈ 𝑅, then 𝑝1 ⋅48 𝑝2 ∈

𝐴𝑝𝑟(𝑅).
7. For every 𝑝1, 𝑝2, 𝑝3 ∈ 𝑅, then (𝑝1 ⋅48𝑝2)⋅48𝑝3 = 𝑝1 ⋅48(𝑝2 ⋅48𝑝3)

in 𝐴𝑝𝑟(𝑅).
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Table 3. Table Cayley ⋅48 on 𝑅

⋅48 0 8 16 24 32 40
0 0 0 0 0 0 0
8 0 16 32 0 16 32
16 0 32 16 0 32 16
24 0 0 0 0 0 0
32 0 16 32 0 16 32
40 0 32 16 0 32 16

8. For every 𝑝1, 𝑝2, 𝑝3 ∈ 𝑅, then (𝑝1 +48 𝑝2) ⋅48 𝑝3 = (𝑝1 ⋅48
𝑝3) +48 (𝑝2 ⋅48 𝑝2) in 𝐴𝑝𝑟(𝑅) and 𝑝1 ⋅48 (𝑝2 +48 𝑝3) = (𝑝1 ⋅48
𝑝2) +48 (𝑝1 ⋅48 𝑝3) in 𝐴𝑝𝑟(𝑅).

It is proved that 𝑅 is the rough ring of the approximation space
( , 𝜑).

Example 2. Using the approximation space in Example 1, let
𝑊 ⊆ 𝑅 be a nonempty set with 𝑊 = {0, 24}, 𝐴𝑝𝑟(𝑊 ) = 𝑄1 =
{0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44}, and 𝐴𝑝𝑟(𝑊 ) = ∅.1. 𝑝1 − 𝑝2 ∈ 𝐴𝑝𝑟(𝑊 ), for every 𝑝1, 𝑝2 ∈ 𝑊 ;

2. 𝑟𝑝1 ∈ 𝐴𝑝𝑟(𝑊 ) and 𝑝1𝑟 ∈ 𝐴𝑝𝑟(𝑊 ), for every 𝑝1 ∈ 𝑊 and
𝑟 ∈ 𝑅.

It is proven that 𝑊 is a rough ideal of the rough ring 𝑅.

To construct new approximation spaces based on group struc-
tures and subgroup relations, we consider the following result.

Proposition 3.1. Let ( , 𝜑) be an approximation space, where 
is a finite group, and define the equivalence relation 𝜑 by 𝑝1𝜑𝑝2
if and only if 𝑝1 − 𝑝2 ∈ 𝑀 , for 𝑝1, 𝑝2 ∈  , where 𝑀 is a subgroup
of  . Then there exists an approximation space ( ′, 𝜑′), where
 ′ = {𝑝1 + 𝑄 ∣ 𝑝1 ∈ }, for a subgroup 𝑄 of  .

Proof. We will show that there exists an approximation space
( ′, 𝜑′), where  ′ = {𝑝1 + 𝑄 ∣ 𝑝1 ∈ }, for some subgroup 𝑄
of  . Given an approximation space ( , 𝜑), where 𝑝1𝜑𝑝2 if and
only if 𝑝1 − 𝑝2 ∈ 𝑀 , for 𝑝1, 𝑝2 ∈  , and 𝑀 is a subgroup  . The
equivalence classes induced by 𝜑 are of the form 0 + 𝑀, 𝑝1 +
𝑀, 𝑝2 + 𝑀, ..., 𝑝𝑛 + 𝑀 . Now choose 𝑄 = 0 + 𝑀 subgroup of  ,
then  ′ = {𝑝1 + 𝑄 ∣ 𝑝1 ∈ }. Since 0 + 𝑄 = 𝑄 ∈  ′, we have
 ′ ≠ ∅. Next, we define a relation 𝛾 ′ on  ′ as follows: for any
𝑝1 + 𝑄, 𝑝2 + 𝑄 ∈  ′, we say (𝑝1 + 𝑄)𝜑′(𝑝2 + 𝑄) if and only if
𝑝1 − 𝑝2 ∈  . We will show that the relation 𝜑′ is an equivalence
relation on  ′.

1. For any 𝑝1 + 𝑄 ∈  ′, we have 𝑝1 − 𝑝1 = 0 ∈  , so (𝑝1 +
𝑄)𝜑′(𝑝1 + 𝑄), i.e. 𝜑′ is reflexive.

2. For any 𝑝1 + 𝑄, 𝑝2 + 𝑄 ∈  ′, if (𝑝1 + 𝑄)𝜑′(𝑝2 + 𝑄), then
𝑝1 − 𝑝2 ∈  , which implies 𝑝2 − 𝑝1 = −(𝑝1 − 𝑝2) ∈  . So,
(𝑝2 + 𝑄)𝜑′(𝑝1 + 𝑄), i.e. 𝜑′ is symmetric.

3. For any 𝑝1 + 𝑄, 𝑝2 + 𝑄, 𝑝3 + 𝑄 ∈  ′ if (𝑝1 + 𝑄)𝛾 ′(𝑝2 + 𝑄)
and (𝑝2 + 𝑄)𝜑′(𝑝3 + 𝑄), then 𝑝1 − 𝑝2 ∈  and 𝑝2 − 𝑝3 ∈  .
So, (𝑝1 − 𝑝2) + (𝑝2 − 𝑝3) = 𝑝1 − 𝑝3 ∈  , which implies
(𝑝1 + 𝑄)𝜑′(𝑝3 + 𝑄), i.e. 𝜑′ is transitive.

Thus, 𝜑′ is an equivalence relation on  ′. Therefore, ( ′, 𝜑′) is
an approximation space.

To construct new approximation spaces based on ring struc-
tures and ideal relations, we consider the following result.

Proposition 3.2. Let ( , 𝜑) be an approximation space, where
 is a finite ring, and define the equivalence relation by 𝑝1𝜑𝑝2
if and only if 𝑝1 − 𝑝2 ∈ 𝑃 , for 𝑝1, 𝑝2 ∈  , where 𝑃 is an ideal
of  . Then there exists an approximation space ( ′, 𝜑′), where
 ′ = {𝑝1 + 𝑃 ∣ 𝑝1 ∈ }, for an ideal 𝑃 of  .

The steps of proving Proposition 3.2 are the same as the steps in
the proof of Proposition 3.1.

Example 3. Based on Example 1, using Proposition 3.2 we obtain
the approximation space ( ′, 𝜑′), where  ′ = {𝑝1 +48 𝑄1 ∣ 𝑝1 ∈
} = {0 +48 𝑄1, 1 +48 𝑄1, 2 +48 𝑄1, 3 +48 𝑄1} with

0 +48 𝑄1 = {0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44};
1 +48 𝑄1 = {1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45}
2 +48 𝑄1 = {2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46};
3 +48 𝑄1 = {3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47}.

Define an equivalence relation 𝜑′ on the set  ′, for every 𝑝1+48
𝑄1, 𝑝2 +48 𝑄1 ∈  ′ holds (𝑝1 +48 𝑄1)𝜑′(𝑝2 +48 𝑄1) if and only if
𝑝1 −48 𝑝2 ∈  . The equivalence classes on the set 𝑈 ′ are obtained
as follows:

𝑄′
1 = {0 +48 𝑄1, 1 +48 𝑄1, 2 +48 𝑄1, 3 +48 𝑄1}.

Given a nonempty subset 𝑅′ ⊆  ′ where 𝑅′ = {1 +48 𝑄1, 3 +48 𝑄1},
𝐴𝑝𝑟(𝑅′) = 𝑄′

1 = {0 +48 𝑄1, 1 +48 𝑄1, 2 +48 𝑄1, 3 +48 𝑄1}, and
𝐴𝑝𝑟(𝑅′) = ∅.

The set 𝑅′ is a rough ring with respect to the operations +48 and
⋅48 defined by:

(𝑝1 +48 𝑄1) +48 (𝑝2 +48 𝑄1) = (𝑝1 +48 𝑝2) +48 𝑄1,
(𝑝1 +48 𝑄1) ⋅48 (𝑝2 +48 𝑄1) = (𝑝1 ⋅48 𝑝2) +48 𝑄1,

for every 𝑝1 +48 𝑄1, 𝑝2 +48 𝑄1 ∈ 𝑅′. The set 𝑅′ is called the rough
quotient ring on the approximation space ( ′, 𝜑′).

Next, we construct the rough quotient module.

Example 4. Let ( , 𝜑) be an approximation space with  = ℤ60.
We define an equivalence relation 𝜑 such that 𝑝1𝜑𝑝2 holds if and
only if 𝑝1 −60 𝑝2 = 3𝑙 with 𝑝1, 𝑝2 ∈  , and 𝑙 ∈ ℤ. The equivalence
classes on the set  are obtained as follows:
𝑄1 = {0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45,
48, 51, 54, 57}
𝑄2 = {1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46,
49, 52, 55, 58}
𝑄3 = {2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47,
50, 53, 56, 59}

Given a nonempty subset 𝑅 ⊆  with 𝑅 = {4, 14, 18, 28, 32, 42, 46,
56}, 𝐴𝑝𝑟(𝑅) = 𝑄1 ∪ 𝑄2 ∪ 𝑄3 =, and 𝐴𝑝𝑟(𝑅) = ∅. We will show
that 𝑅 is a rough ring with binary operation (+60, ⋅60).
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1. For every 𝑝1, 𝑝2 ∈ 𝑅, 𝑝1 +60 𝑝2 ∈ 𝐴𝑝𝑟(𝑅).
2. For every 𝑝1, 𝑝2, 𝑝3 ∈ 𝑅, (𝑝1+60𝑝2)+60𝑝3 = 𝑝1+60(𝑝2+60𝑝3)

in 𝐴𝑝𝑟(𝑅).
3. There is 𝑒 ∈ 𝐴𝑝𝑟(𝑅), then 𝑝1 +60 𝑒 = 𝑒 +60 𝑝1 = 𝑝1 for every

𝑝1 ∈ 𝑅.
4. For every 𝑝1 ∈ 𝑅, there is 𝑝−1

1 ∈ 𝑅, then 𝑝1 +60 𝑝−1
1 =

𝑝−1
1 +60 𝑝1 = 𝑒.

5. For every 𝑝1, 𝑝2 ∈ 𝑅, then 𝑝1 +60 𝑝2 = 𝑝2 +60 𝑝1.
6. For every 𝑝1, 𝑝2 ∈ 𝑅, then 𝑝1 ⋅60 𝑝2 ∈ 𝐴𝑝𝑟(𝑅).
7. For every 𝑝1, 𝑝2, 𝑝3 ∈ 𝑅, then (𝑝1 ⋅60𝑝2)⋅60𝑝3 = 𝑝1 ⋅60(𝑝2 ⋅60𝑝3)

in 𝐴𝑝𝑟(𝑅).
8. For every 𝑝1, 𝑝2, 𝑝3 ∈ 𝑅, then (𝑝1 +60 𝑝2) ⋅60 𝑝3 = (𝑝1 ⋅60

𝑝3) +60 (𝑝2 ⋅60 𝑝3) in 𝐴𝑝𝑟(𝑅) and 𝑝1 ⋅60 (𝑝2 +60 𝑝3) = (𝑝1 ⋅60
𝑝2) +60 (𝑝1 ⋅60 𝑝3) in 𝐴𝑝𝑟(𝑅).

Thus, 𝑅 is a rough ring of the approximation space ( , 𝜑).

Example 5. Using the approximation space in Example 4, let𝑀 ⊆
 be a nonempty set with 𝑀 = {0, 6, 12, 18, 24, 30, 36, 42, 48, 54},
𝐴𝑝𝑟(𝑀) = 𝑄1 = {0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42,
45, 48, 51, 54, 57} and 𝐴𝑝𝑟(𝑀) = ∅. It will be proved that 𝑀 is a
commutative rough group with binary operation +60.1. For every 𝑝1, 𝑝2 ∈ 𝑀 , 𝑝1 +60 𝑝2 ∈ 𝐴𝑝𝑟(𝑀).

2. For every 𝑝1, 𝑝2, 𝑝3 ∈ 𝑀 , (𝑝1+60𝑝2)+60𝑝3 = 𝑝1+60(𝑝2+60𝑝3)
in 𝐴𝑝𝑟(𝑀).

3. There is 𝑒 ∈ 𝐴𝑝𝑟(𝑀), then 𝑝1+60 𝑒 = 𝑒 +60 𝑝1 = 𝑝1 for every
𝑝1 ∈ 𝑀 .

4. For every 𝑝1 ∈ 𝑀 , there is 𝑝−1
1 ∈ 𝑀 , then 𝑝1 +60 𝑝−1

1 =
𝑝−1
1 +60 𝑝1 = 𝑒.

5. For every 𝑝1, 𝑝2 ∈ 𝑀 , then 𝑝1 +60 𝑝2 = 𝑝2 +60 𝑝1.
Hence, ⟨𝑀, +60⟩ is a commutative rough group. Next, it will be
proved that 𝑀 is a rough module over the rough ring 𝑅.

1. For any 𝑟 ∈ 𝑅 and 𝑝1, 𝑝2 ∈ 𝑀 , then
𝑟 ⋅60 (𝑝1 +60 𝑝2) = (𝑟 ⋅60 𝑝1) +60 (𝑟 ⋅60 𝑝2).

2. For any 𝑟1, 𝑟2 ∈ 𝑅 and 𝑝1 ∈ 𝑀 , then
(𝑟1 +60 𝑟2) ⋅60 𝑝1 = (𝑟1 ⋅60 𝑝1) +60 (𝑟2 ⋅60 𝑝1).

3. For any 𝑟1, 𝑟2 ∈ 𝑅 and 𝑝1 ∈ 𝑀 , then
(𝑟1 ⋅60 𝑟2) ⋅60 𝑝1 = 𝑟1 ⋅60 (𝑟2 ⋅60 𝑝1).

4. There exists 1 ∈ 𝐴𝑝𝑟(𝑅), such that for every 𝑝1 ∈ 𝑀 holds
1 ⋅60 𝑝1 = 𝑝1 where 1 is the unit element of 𝑅.

It is proved that 𝑀 is a rough module over the rough ring 𝑅.

Example 6. Using the approximation space in Example 4, let
𝑁 ⊆ 𝑀 be a nonempty set with 𝑁 = {0, 12, 24, 36, 48}, 𝐴𝑝𝑟(𝑁 ) =
𝑄1 = {0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42,
45, 48, 51, 54, 57} and 𝐴𝑝𝑟(𝑁 ) = ∅.1. For every 𝑛1, 𝑛2 ∈ 𝑁 , then 𝑛1 +60 𝑛2 ∈ 𝐴𝑝𝑟(𝑁 ).

2. For every 𝑛 ∈ 𝑁 , then 𝑛−1 ∈ 𝑁 .
3. 𝑟 ⋅60 𝑛 ∈ 𝐴𝑝𝑟(𝑁 ), for every 𝑟 ∈ 𝑅, 𝑛 ∈ 𝑁 .

It is proven that 𝑁 is a rough submodule of 𝑀 over the rough ring
𝑅.

Proposition 3.3. Let ( , 𝜑) be an approximation space, where 
is a finite module, and define the equivalence relation by 𝑝1𝜑𝑝2 if
and only if 𝑝1 − 𝑝2 ∈ 𝐾 , for 𝑝1, 𝑝2 ∈  , where 𝐾 is a submodule
of  . Then there exists an approximation space ( ′, 𝜑′), where
 ′ = {𝑝1 + 𝑁 |𝑎 ∈ }, for a submodule 𝑁 of  .

The steps of proving Proposition 3.3 are the same as the steps in
the proof Proposition 3.1.

Example 7. Based on Example 4, using Proposition 3.3 we obtain
the approximation space ( ′, 𝜑′), with  ′ = {𝑝1 +60 𝑄1 ∣ 𝑝1 ∈
} = {0 +60 𝑄1, 1 +60 𝑄1, 2 +60 𝑄1} with
0 +60 𝑄1 = {0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39,
42, 45, 48, 51, 54, 57};
1 +60 𝑄1 = {1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37,
40, 43, 46, 49, 52, 55, 58};
2 +60 𝑄1 = {2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41,
44, 47, 50, 53, 56, 59}.

Define an equivalence relation 𝜑′ on the set  ′, for every 𝑝1 +60 𝑄1,
𝑝2 +60 𝑄1 ∈  ′ holds (𝑝1 +60 𝑄1)𝜑′(𝑝2 +60 𝑄1) if and only if
𝑝1 −60 𝑝2 ∈  . The equivalence classes on the set  ′ are obtained
as follows:
𝑄′
1 = {0 +60 𝑄1, 1 +60 𝑄1, 2 +60 𝑄1}.

Let 𝑀 ′ ⊆  ′ be a nonempty subset with 𝑀 ′ = {1 +60 𝑄1, 2 +60 𝑄1},
𝐴𝑝𝑟(𝑀 ′) = 𝑄′

1 = {0 +60 𝑄1, 1 +60 𝑄1, 2 +60 𝑄1}, 𝐴𝑝𝑟(𝑀 ′) = ∅.

The set𝑀 ′ is a rough module over the rough ring 𝑅 concerning the
scalar multiplication operation 𝑟 ⋅60 (𝑝1 +60 𝑄1) = (𝑟 ⋅60 𝑝1) +60 𝑄1,
for any 𝑟 ∈ 𝑅 and 𝑝1 +60 𝑄1 ∈ 𝑀 ′. The set 𝑀 ′ is called the rough
quotient module on the approximation space ( ′, 𝜑′).

4. CONCLUSIONS

Based on the results and discussions, it has been shown that
the rough quotient group ⟨𝑅/𝑉 , +⟩ forms a commutative rough
group, where 𝑅 is a rough ring and 𝑉 is a rough ideal of 𝑅. The
set 𝑅/𝑉 = {𝑟 = 𝑟 +𝐴𝑝𝑟(𝑉 ) ∣ 𝑟 ∈ 𝑅} is equipped with well-defined
addition and multiplication operations, making it a rough ring
referred to as rough quotient ring. Since 𝑉 is a rough ideal, its
upper approximation 𝐴𝑝𝑟(𝑉 ) forms an ideal, implying that 𝑉 is
an arbitrary nonempty subset of some ideal 𝐸 in a universe 
such that 𝐴𝑝𝑟(𝑉 ) = 𝐸.

Furthermore, the rough quotient group ⟨𝑀/𝐾, +⟩ is also a
commutative rough group, where 𝑀 is a rough module over the
rough ring 𝑅 and 𝐾 is a rough submodule of 𝑀 . The scalar mul-
tiplication defined on 𝑀/𝐾 is well defined due to the structure
of the submodule preserved by 𝐴𝑝𝑟(𝐾). Therefore, 𝑀/𝑁 forms
a rough quotient module over the rough ring 𝑅, where 𝐾 is an
arbitrary nonempty subset of a submodule 𝐸 in a universe 
such that 𝐴𝑝𝑟(𝑁 ) = 𝐸. These findings confirm the structural
consistency of rough quotient rings and modules within the
framework of rough set theory applied to algebraic systems over
finite universes.
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