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Abstract
In symmetric cryptography, the confidentiality of the chosen key and the security of its
delivery mechanism are paramount to minimize the risk of unauthorized disclosure. Typi-
cally, in such systems, the sender and recipient focus primarily on the message (plaintext
and ciphertext) rather than the complexities associated with key management. This ap-
proach aims to alleviate the burden of selecting a suitable and robust key for communicating
parties. This study introduces a Hill Cipher modulo 95 cryptography method employing a
matrix-based key, where key generation is achieved through a quantifiable randomization
algorithm. The developed 2x2 key matrix facilitates a substantial number of possible keys,
specifically 954 (exceeding 81 million). The key matrix generation process incorporates
several functions, including those for ASCII character conversion, prime number verification,
relative primality checks, modulo arithmetic, inverse modulo computation, determinant
calculation, and inverse matrix determination. To simulate the encryption and decryption
process, a desktop application was developed using the Lazarus Development IDE version
3.6. The application demonstrates effective generation of the required key matrix.
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1. INTRODUCTION

Data security is paramount in contemporary application develop-
ment, forming the cornerstone for maintaining user trust, ensur-
ing regulatory compliance, and protecting sensitive information
from unauthorized access. As applications are increasingly inte-
grated into various facets of life, spanning personal communica-
tions, financial transactions, critical infrastructure management,
and healthcare systems, the imperative to safeguard the data
they process and store intensifies [1]. The escalating sophistica-
tion of cyber threats, coupled with the growing complexity of
application architectures and the proliferation of attack vectors,
necessitates a comprehensive and proactive approach to data
security [2]. This approach should encompass robust security
measures, secure coding practices, and continuous monitoring to
mitigate potential vulnerabilities and ensure data confidentiality,

integrity, and availability.
Data encryption is a critical measure for protecting sensi-

tive information against security threats such as data theft and
unauthorized access. By transforming data into an unintelligi-
ble format without the appropriate decryption key, encryption
ensures that only authorized entities can access the informa-
tion. In an era characterized by frequent cyber-attacks and data
breaches, encryption serves as a fundamental tool for preserving
individual privacy and ensuring business security. Furthermore,
encryption facilitates adherence to stringent data security regula-
tions across diverse industries, thereby reinforcing trust among
customers and business partners [3].

Symmetric cryptography, which employs a single secret key
for both encryption and decryption, establishes a confidential
channel between communicating parties who share the key. This
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method represents a foundational approach to ensuring confiden-
tiality, as unauthorized entities are unable to decipher encrypted
information without possessing the key. Symmetric encryption
is valued for its efficiency, rendering it suitable for encrypting
large volumes of data, as commonly seen in file encryption, mes-
saging applications, and data transfer protocols [4].

Hill Cipher cryptography, developed by Lester S. Hill in 1929,
is an encryption technique rooted in linear algebra that uti-
lizes matrix operations to secure messages. In this method, the
plaintext is converted into a numerical representation and sub-
sequently encrypted through multiplication by a predetermined
key matrix. The key matrix must be invertible in modulo arith-
metic to enable decryption. The strength of the Hill Cipher lies
in its capacity to transform multiple characters simultaneously,
thereby increasing resistance to frequency analysis. However,
the Hill Cipher has limitations, including vulnerability to specific
attacks if the key is not appropriately selected. Nevertheless,
this method represents an important precursor in the evolution
of modern cryptography [5].

The uniqueness of the encryption key is a crucial determi-
nant of data security against unauthorized threats. A unique
key provides an additional layer of protection by increasing the
difficulty for attackers to guess or replicate it. The utilization of
a unique key ensures that each encryption instance is exclusive
to a particular user or system, thus mitigating the risk of key
compromise. Moreover, employing a unique key contributes
to data integrity and confidentiality, as only the corresponding
key can decrypt the information. Across both business and per-
sonal contexts, key uniqueness is a fundamental prerequisite for
maintaining trust and safeguarding sensitive information from
evolving security threats. Consequently, the selection or genera-
tion of a unique key is an indispensable step in any encryption
system.

Determining an appropriate encryption key presents a sig-
nificant challenge. The diversity of encryption algorithms neces-
sitates keys with specific formats and lengths, complicating the
key selection process. Furthermore, key strength is contingent
upon its uniqueness, and generating a truly unique key demands
a meticulous approach and robust software. Therefore, applica-
tion users face the challenge of obtaining a sufficiently robust
key, a task that is not universally straightforward.

This research introduces a method for generating keys in the
context of classical symmetric cryptography, specifically the Hill
Cipher. Generating the required invertible matrix key presents
a non-trivial challenge for users, particularly when performed
manually.

2. LITERATURE REVIEW

Cryptography, historically limited to securing confidential com-
munications, has undergone significant evolution. Now, com-
puter networks increasingly rely on cryptography as a funda-
mental mechanism to guarantee the privacy of digital informa-
tion. Early forms, like the first Caesar cipher or subsequent
mono-alphabetic substitution ciphers, were notably vulnerable
to statistical attacks [6].

The Hill Cipher is a symmetric cryptography method that
has been utilized in various applications. However, some stud-
ies indicate that this method is susceptible to known-plaintext
attacks [7]. Research has explored variations in the value and
dimensions of the key matrix as a potential strategy to address
this vulnerability. An alternative perspective, another article
asserts that lattice-based cryptography is a highly promising
and practical solution for securing the Internet of Things (IoT)
against the looming threat of quantum computing [8].

2.1 Hill Cipher Cryptography Algorithm
The Hill Cipher cryptography method employs a transformation
matrix as a core component of its operation. Introduced by Lester
S. Hill in 1929, this technique was detailed in his publication,
"Cryptography in an Algebraic Alphabet" [9]. The Hill Cipher is
based on the principle that matrices can be used for encryption
due to their invertible property, which allows for decryption
using the inverse of the key matrix. Consequently, decryption
of the ciphertext necessitates that the message recipient first
calculate the inverse of the key matrix. Thus, the inverse matrix
can only be determined if the key matrix is known [10].

To encrypt plaintext P = (𝑝1, 𝑝2,. . . 𝑝𝑛) using the key matrix
K = [𝑘𝑖𝑗 ] which produces ciphertext C = (𝑐1, 𝑐2, . . . 𝑐𝑛) can be
expressed as follows [10]:
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or in the form of a system of linear equations in modulus 26
expressed as:

𝑐1 = (𝑘11𝑝1 + 𝑘12𝑝2 + ⋯ + 𝑘1𝑛𝑝𝑛) mod 26
𝑐2 = (𝑘21𝑝1 + 𝑘22𝑝2 + ⋯ + 𝑘2𝑛𝑝𝑛) mod 26
…

𝑐𝑛 = (𝑘𝑛1𝑝1 + 𝑘𝑛2𝑝2 + ⋯ + 𝑘𝑛𝑛𝑝𝑛) mod 26

or in notation is stated as:

𝐂 = 𝐊𝐏 mod 26

Meanwhile, to decrypt the ciphertext 𝐂 = (𝑐1, 𝑐2, … , 𝑐𝑛) using
the key matrix 𝐊−1 = [𝑘𝑖𝑗 ]−1 which produces the plaintext
𝐏 = (𝑝1, 𝑝2, … , 𝑝𝑛) can be expressed in the notation:

𝐏 = 𝐊−1𝐂 mod 26

2.2 ASCII Codes
The standard ASCII (American Standard Code for Information
Interchange) code uses 7 bits to represent each character, so there
are 27 = 128 unique characters. But 33 of these characters are
non-printable control characters. For example, the backspace,
delete, escape, enter, and other characters. The rest, amounting
to 95 characters (including the space character) are printable
characters that can be seen or not seen visually on the computer
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screen including upper and lower case letters, numbers, punctu-
ation marks, and symbols [11, 12, 13, 14].
The 95 characters in ASCII contained in the discussion of this
research include:

1. Capital letters (A to Z) totaling 26 characters
2. Lowercase letters (a to z) totaling 26 characters
3. Numbers (0 to 9) totaling 10 characters
4. Special symbol characters totaling 32 characters, namely !
" # $ % & ’ ( ) * + , - . / : ; < =
> ? @ [ \] _ ` { } ~

5. A space character
In this research, 95 characters were used because that is

the number of characters used by humans in communicating in
everyday life. This application is a development of research that
was previously conducted by researchers [15].

A coded message can be transformed into its ASCII equiv-
alent, then converted into its binary representation. Once in
binary, it’s ready to be embedded within a cover file using an ap-
propriate cryptographic algorithm [16]. Several studies present
new cryptographic algorithms. For example, the proposed algo-
rithm can be used to encrypt and decrypt text messages based on
ASCII character codes. The main idea of the proposed algorithm
is to associate each character in the plain text with the previous
character during encryption and decryption [17].

2.3 Random Numbers
In cryptography, generating random numbers is absolutely cru-
cial. These numbers must be able to withstand attacks from
adversaries. Therefore, it’s essential to validate their function-
ality and robustness against various attacks, including fault in-
jection attacks [18]. We’ve determined that while all of them
are cryptographically secure against traditional attacks, they are
vulnerable to quantum computers. This is because they can be
broken using Shor’s and Grover’s algorithms [19].

Generating random numbers is a core challenge across nu-
merous information processing fields. This includes not only
classical and quantum cryptography, but also areas like mathe-
matical modeling, Monte Carlo methods, gambling, and many
more. For most of these applications, both the quality of the
randomness and the efficiency of the generation process are
critically important [20]. Random number generation has been
the subject of numerous studies in computer science and infor-
mation theory. For instance, some research has yielded explicit
findings on the performance of the interval algorithm for gen-
erating random numbers, specifically when using real number
expressions [21].

A data-driven approach relies on stochastic processes simu-
lated with random numbers. True random numbers are inher-
ently unpredictable, lacking any bias or correlation, making it
virtually impossible to create a system that produces ’genuinely’
random values. Consequently, research has focused on develop-
ing pseudo-random number generators. While not truly random,
these pseudo-random numbers prove practically useful [22].

3. METHODS

In this research, several function modules were used as follows:

1. ApakahPrima function. This function is used to check
whether an integer number 𝑖 is a prime number or not.
Here is the pseudocode:

2. ApakahRelatifPrima function. This function is used to
check whether two integers 𝑎 and 𝑚 are relatively prime
or not. Here is the pseudocode:

3. Modulo function. This function is used to calculate the
modulo value y of an integer number x that is entered.
Here is the pseudocode:

4. Invers_Modulo Function. This function is used to cal-
culate the inverse modulo m value of an integer a that is
entered. Here is the pseudocode:

4. RESULTS AND DISCUSSION

In this research, a desktop-based software has been developed
to implement the developed method [23, 24]. The development
was carried out using Lazarus Development IDE Version 3.6 [25].

The explanation using the application is shown as follows.
Suppose given an example of a plaintext:
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Table 1. Experiment to Generate 2x2 Key Matrix

Experiment 2x2 Matrix Invers Determinant Determinant
Invers in 𝑍95

1 (
6 7
10 84) (

86 72
35 74) 434 44

2 (
86 44
84 63) (

29 28
88 23) 1722 8

3 (
39 36
35 13) (

29 22
91 87) -753 -27

4 (
8 70
19 47) (

12 65
76 93) -954 -24

5 (
90 19
43 93) (

91 57
9 85) 7553 2

6 (
92 65
19 11) (

63 25
38 26) -223 -72

7 (
52 84
46 44) (

6 49
11 33) -1576 -56

8 (
15 1
43 16) (

43 27
21 70) 197 68

9 (
78 80
37 41) (

82 30
21 61) 238 2

10 (
1 48
64 90) (

90 9
12 77) -2982 -18

which is then encrypted into ciphertext:

Then the ciphertext is decrypted again to produce plaintext:

The application display that illustrates how the Hill Cipher
cryptography process is carried out is shown in Figure 1.

In the display example above, the matrix used as the key is a
2x2 matrix, namely:

[
1 48
64 90]

The 2x2 matrix is not entered manually by the user but is
generated randomly through the application developed in this
study. To get the value, press the "Set Matrix" button so that it
displays the display as in Figure 2.

The steps for generating the 2x2 matrix are carried out by
pressing the “Randomize!” button and then the algorithmic se-
quence carried out by the program is as follows:

1. Generate 4 random numbers between 1 and 95 as elements
of matrix A identified as A11, A12, A21, and A22

𝐴 = [
1 48
64 90]

2. Defines the adjoint of the matrix A whose elements are
identified as AdjA11, AdjA12, AdjA21, and AdjA22

Adjoint(𝐴) = [
90 −48
−64 1 ]

3. Calculate the value of Det, which is the determinant of
matrix A

Det = 𝐴11 × 𝐴22 − 𝐴12 × 𝐴21
= 1 × 90 − 64 × 48
= 90 − 3072
= −2982

4. Calculates the value of Det_Inv, which is the inverse mod-
ulo 95 of Det

IF Det< 0 THENDet_Inv =−Invers_Modulo(−Det,
95)
IF Det> 0 THENDet_Inv = Invers_Modulo(Det,
95)

Since, Det = −2982 then:

Det_Inv = −Invers_Modulo(−Det, 95)
= −Invers_Modulo(−(−2982), 95)
= −18
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Figure 1. Encryption and Decryption Application Interface using Hill Cipher Algorithm

Figure 2. 2x2 Key Matrix Randomization Page Interface

5. If the value of Det_inv = 0 then the process is repeated
from no. 1, but if Det_inv ≠ 0 proceed to step 6.

6. Calculate the inverse of matrix A, namely B = Det_Inv *
Adjoin(A)
Calculated the inverse matrix modulo 95, obtained:

𝐵 = [
90 9
12 77]

7. End.
In this research, 10 experiments were carried out to generate

similar key matrices, the results of which are shown in Table 1.

5. CONCLUSIONS

This research introduced a method for generating key matrices
in Hill Cipher cryptography, specifically by generating random
numbers within the range of 1 to 95. The implementation of this
automated generation process incorporates several functions,
including those for generating random numbers, verifying prime

numbers, identifying relatively prime numbers, and perform-
ing modulo, inverse modulo, determinant, and inverse matrix
calculations. This study employed a 2x2 matrix as an illustra-
tive example; however, the methodology can be extended to
accommodate larger matrix dimensions, such as 3x3 or 4x4. To
simulate the encryption and decryption processes, a desktop-
based cryptography application was developed using the Lazarus
Development IDE Version 3.6. The application demonstrated
favorable results in generating 10 distinct key matrices.
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